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ABSTRACT
In recent years, deep generative models have achieved impressive
performance such as realizing image generation that is indistin-
guishable from real images. Particularly, Latent Diffusion Models,
one of the image generation models, have had a significant impact
on society. Therefore, video generation is attracting attention as
the next modality. However, video generation is more challeng-
ing than image generation due to the consideration of temporal
consistency and the increase in computational complexity, since a
video is a sequence of multiple frames. In this study, we propose a
video generation model based on diffusion models employing 3D
VQGAN, which is called VQ-VDM. The proposed model is about
nine times faster than the Video Diffusion Models which directly
generate videos, since our model generates a latent representation
which is decoded into a video by a VQGAN decoder. Moreover, our
model can generate higher quality video than prior video genera-
tion methods exclude state-of-the-art method.
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1 INTRODUCTION
In recent years, deep generative models have achieved impressive
performance such as realizing image generation that is indistin-
guishable from real images. Particularly, Latent Diffusion Mod-
els [12], one of the image generation models, have had a signifi-
cant impact on society. Therefore, video generation is attracting
attention as the next modality. However, video generation is more
challenging than image generation due to the consideration of tem-
poral consistency and the increase in computational complexity,
since a video is a sequence of multiple frames.
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Although numerous methods using Transformers for autore-
gressive generation of video frames [11, 27] have been proposed,
there is a problem of accumulating error every time generation
occurs. In contrast, Video Diffusion Models (VDM) [6] can generate
high-quality videos without accumulating error by simultaneously
generating all frames. However, due to the architecture of diffusion
models, it has very high computational complexity, resulting in
slower generation time compared to other methods.

Therefore, in this study, we propose a video generation model
based on Latent DiffusionModels [12] with 3DVQGAN. By learning
about the latent representation encoded by 3DVQGAN, it is possible
to reduce computational costs compared to VDM [6] which directly
generate videos. Our proposed method is about nine times faster
than VDM, although our method generates higher resolution videos.
Moreover, our model can generate higher quality video than prior
video generation methods exclude state-of-the-art method such as
TATS [18].

2 RELATEDWORKS
The video generation task is to generate high quality videos that do
not exist in the training data by modeling the distribution of real
world videos with a generative model. The VAE-based method of
He et al. [8] is based on the idea that the video is governed by two
factors: temporal invariance and scene dynamics. MoCoGAN [16],
a GAN-based method, also considers that video can be divided into
motion and content, and generates video from different sampling
noises. DVD-GAN [1] consists of a Spatial Discriminator and a
Temporal Discriminator. DIGAN [17] uses Implicit Neural Repre-
sentations (INR) for video generation. By manipulating spatial and
temporal coordinates, respectively, the dynamics of the generated
video is improved. These GAN-based methods are the mainstream
approach in the previous studies and have advantages such as fast
video generation. However, due to the characteristics of GANs,
there are issues such as unstable learning and mode collapse. The
proposed method based on diffusion models solves these problems.

VideoGPT [27], an autoregressive-based method, is an autore-
gressive video generation model using VQ-VAE [24] and Trans-
former [25]. In TATS [18], VQ-VAE is replaced by VQGAN [3] to
achieve higher quality and longer video generationwith larger code-
book size and hierarchical generation structure. These autoregressive-
based methods have the problem of accumulating losses each time
a video frame is generated. In contrast, the proposed method gen-
erates all frames simultaneously, so there is no loss accumulation.

Video Diffusion Models (VDM) [6] is a video generation method
that uses diffusion models. The architecture of the 3D U-Net used
in VDM is spatio-temporally decomposed, and only Temporal At-
tention is added to the 2D U-Net to support 3D. This method is
a straightforward extension of diffusion models for image gen-
eration to the video domain, and is capable of generating very
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high-quality video. However, in general, diffusion models requires
huge computational resources and sampling time. In contrast, our
proposed method is trained to generate latent variables decoded by
3D VQGAN instead of generating videos directly, which enables
fast sampling with fewer computational resources.

2.1 Method
The method is divided into two steps: sampling latent vectors using
diffusion models and encoding video frames into latent vectors
using 3D VQGAN. First, Gaussian noise of the same size as the
latent variable is sampled, and latent variables are generated by
diffusion models. Then, the trained 3D VQGAN is used to generate
the video.

2.2 Video Compression with 3D VQGAN
Since learning videos directly with Diffusion Models is computa-
tionally expensive, we use 3D VQGAN to compress videos into
low-dimensional latent variables. A schematic diagram of the 3D
VQGAN is shown in Figure 1.

Figure 1: 3D VQGAN

TheVQGANencoderE downsamples an input video𝑥 ∈ R3×𝑇×𝐻×𝑊

one-fourth times in the temporal direction and one-eighth times in
the spatial direction. Thus, a 3 channels × 16 frames × 128px height
× 128px width video is encoded into a 4 channels × 4 frames ×
16px height × 16px width latent vector 𝑧 ∈ R4×(𝑇 /4)×(𝐻/8)×(𝑊 /8) .
The encoded latent vector is replaced by the codebook embedding
vector 𝑒 by the quantization module q, yielding the quantized latent
vector 𝑧𝑞 = q(𝑧𝑒 , 𝑒). The VQGAN decoder D generates a video by
upsampling the latent vector. Both of the encoder and the decoder
are composed of 3D convolution layers.

The loss function consists of Reconstruction Loss, VQ Loss, Dis-
criminator Loss and Auxiliary Loss. The Reconstruction Loss is
represented in the following equation:

Lrecon = | |𝑥 − 𝑥 | |2 + LLPIPS (𝑥, 𝑥) (1)

LLPIPS is the Perceptual Loss [28] using VGG19.
Reconstruction Loss is composed of L2 Loss and Perceptual Loss

of video 𝑥 and reconstructed video 𝑥 . The VQ Loss is represented
as follows:

Lvq = | |𝑠𝑔[𝑧𝑒 (𝑥)] − 𝑒 | |22 + 𝛽 | |𝑧𝑒 (𝑥) − 𝑠𝑔[𝑒] | |22 (2)

where 𝑧𝑒 is the output of the Encoder and 𝑒 is the codebook embed-
ding. The first item of VQ Loss is Codebook Loss and the second
item is Commitment Loss. The part enclosed by 𝑠𝑔[ ] (stop gradient)
does not back propagate the gradient. Therefore, this loss function
is a loss that brings the codebook embedding and the output of E
closer to each other.

Next, the Discriminator Loss is expressed by

Ldisc = 𝑙𝑜𝑔𝐷 (𝑥) + 𝑙𝑜𝑔(1 − 𝐷 (𝑥)) (3)

where 𝐷 is the Discriminator; the Discriminator is a lightweight
design, consisting of a 3D convolution that downsamples in all
layers.

In addition, the following Discriminator auxiliary losses are
added to stabilize the learning according to [21].

Ldisc_aux =
∑︁
𝑖

| |𝐷 (𝑖 ) (𝑥) − 𝐷 (𝑖 ) (𝑥) | |2 (4)

where 𝐷 (𝑖 ) is the intermediate features in layer i of the Discrimina-
tor. This loss can be used to make learning more stable by minimiz-
ing the L2 loss in the intermediate features as well as in the final
layer of the Discriminator.

Thus, the final loss function is the following with coefficient 𝜆.

L = min
E,q,D

max
𝐷

(Lrecon + 𝜆1Lvq + 𝜆2Ldisc + 𝜆3Ldisc_aux) (5)

where 𝜆1 = 1.0, 𝜆2 = 0.5, and 𝜆3 = 1.0. The parameter 𝛽 for VQ
Loss was set to 0.25. In learning 3D VQGAN, Ldisc does not include
the first 10,000 iterations in the loss function.

We use replication padding for the padding of Conv3D in the
temporal direction. It is a copy of the real frame rather than zero
padding, by following the method of Songwei et al. [18].

2.3 Video Generation with Diffusion Models
We train video diffusion models which output latent variables de-
coded into a video by the 3D VQGAN decoder. Since video’s pixels
are correspond to nearby pixels in spatio-temporal directions, we
use a 3D U-Net in the inverse process of diffusion models as shown
in Figure 2.

Figure 2: 3D U-Net

Each block of the 3D U-Net consists of Residual Block, Spatial
Attention, and Temporal Attention. In the downsampling process,
the video frame size is compressed to half the size and the number
of channels is increased. In the upsampling process, the frame size
is upsampled by a factor of two and the number of the channels is
decresed. The intermediate outputs of the blocks in all downsam-
pling processes are skip-connected and concatenated in module
block units in the upsampling process.

The composition within the Residual Block was implemented in
the order of GroupNormalize, SiLU, and Conv3D. Embeddings such
as time steps conditioned by 3D U-Net were conditioned by adding
them in the middle of the Residual Block. Conv3D uses replication
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padding, which is a copy of the real frame, instead of zero padding
as in 3D VQGAN.

Temporal Attention performs axis swapping on the input vari-
able ℎ ∈ R𝐵×𝐶×𝑇×𝐻×𝑊 to form ℎ′ ∈ R𝐵×𝐻×𝑊 ×𝑇×𝐶 , and treats
all axes in the spatial direction as batch axes and calculates an
Attention Map. Causal Attention mask is applied to the Attention
Map so that frames after the self-frame cannot be referenced.

Since some training datasets used for video generation are not
provided with fixed FPS values, it is necessary to provide a method
that enables uniform training on the model side. Therefore, we also
add the FPS embedding calculated by Eq. 6 to the embedding used
for time step conditioning.

𝑒𝑚𝑏fps = Linear(SiLU(Linear(PE(𝑓 𝑝𝑠)))) (6)

where PE means positional encoding with trigonometric-based
periodic functions proposed by Vaswani et al. [25]. Eq. 6 has the
same form as time step embedding, but is computed using Linear
modules with different weights.

2.4 Training and Sampling
In order to generate class-conditional videos with classifier guid-
ance, an additional classifier models must be trained. Therefore,
diffusion models jointly train class-conditional and unconditional
training models in order to use classifier-free guidance [5]. Since
we use the standard DDPM formulation [4] for training diffusion
models, the loss functions of the proposed method, including FPS
embedding, are represented in Eq. 7 and Eq. 8.

L𝑢𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝜃 ) := E𝑡,𝑧0,𝜖 [| |𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑓 ) | |2] (7)
L𝑐𝑙𝑎𝑠𝑠_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝜃 ) := E𝑡,𝑧0,𝜖 [| |𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑓 , 𝑐) | |2] (8)

where 𝑧𝑡 is the latent variable 𝑧 at the time step 𝑡 , 𝑓 is the FPS value,
and 𝑐 is the class. At the training time, unconditional learning is
performed with probability 𝜌 in Eq. 7 and class conditional learning
is performed with probability 1 − 𝜌 in Eq. 8.

In the testing time, the flow of video generation by our model is
shown in Figure 3. We do not need the VQGAN encoder for video
generation.

Figure 3: Video generation with 3D VQGAN and Diffusion
Model

The class 𝑐 to be generated during class conditional learning is
also prepared and generated by performing classifier free guidance
in a step within the diffusion model. The classifier-free guidance is
expressed using the guidance scale𝑤 as in Eq. 9.

𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑓 , 𝑐) = 𝑤 · (𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑓 , 𝑐) − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑓 )) + 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑓 ) (9)

3 EXPERIMENTS
3.1 Settings
For the experiments, we utilized the UCF-101 dataset [19] and
Sky Time-lapse dataset [26]. We randomly extracted continuous
sequences of 16 frames from these datasets and resized them to
128x128 frame size for training 3DVQGAN and the diffusionmodels.
Note that the training of our VQ-VDM consists two steps where
we perform training of the 3D VQGAN encoder/decoder first, and
training of the latent diffusion models with frozen 3D VQGAN later.

For the measurement of Inception score (IS) [15], Fréchet video
distance (FVD) [23] and Kernel Video Distance (KVD) [23], which
are evaluation indices, 10000, 2048 and 2048 samples were generated
and evaluated, respectively. For IS measurements, we utilized a
C3D model [22] trained on Sports-1M dataset [9] and fine-tuned
on UCF-101. As for FVD and KVD measurements, we utilized an
I3D model [2] trained on Kinetics-400 dataset [10].
UCF-101 is a dataset consisting of 13320 short videos of people
performing 101 different actions; we trained the VQ-VDM with the
Class and FPS conditions. The parameter 𝜌 in the joint learning
was set to 0.5.
Sky Time-lapse is a dataset consisting of 5000 videos of dynamic
sky scenes, such as the cloudy sky with moving clouds, and the
starry sky with moving stars. We trained the VQ-VDM without
FPS or class conditions. Therefore, The parameter 𝜌 in the joint
learning was set to 1.

Figure 4: Generated videos on UCF-101.

Figure 5: Generated videos on the Sky Time-Lapse dataset.
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Figure 6: Comparison between TATS (top) and Ours (bottom) on UCF-101 dataset.

Table 1: UCF-101

Method Resolution Class IS(↑) FVD(↓)
TGAN [13]ICCV2017 64x64 Yes 15.83 -
MoCoGAN [16]CVPR2018 64x64 Yes 12.42 -
DVD-GAN [1]arXiv2019 128x128 Yes 27.38 -
TGANv2 [14]IJCV2020 128x128 Yes 28.87 1209
DIGAN [17]ICLR2022 128x128 No 32.70 577
CogVideo [7]arXiv2022 160x160 Yes 50.46 626
VDM [6]NIPS2022 64x64 No 57.00 -
TATS [18]ECCV2022 128x128 Yes 79.28 332

Ours 128x128 Yes 64.13 425

Table 2: Sky Time-lapse

Method Resolution FVD(↓) KVD(↓)
MoCoGAN-HD [20] ICLR2021 128x128 183.6 13.9
DIGAN [17] ICLR2022 128x128 114.6 6.8
TATS [18] ECCV2022 128x128 132.6 5.7

Ours 128x128 109.4 5.9

Table 3: Sampling time

Method Resolution 100 step time [s]

VDM [6]NIPS2022 16x64x64 35.26±2.43
Ours 16x128x128 3.95±0.01

3.2 The Quality of Video Generation
Figure 4 and Figure 5 show photorealistic video generation for
UCF-101 and Sky Time-lapse, respectively. Both are temporally
consistent and plausibly generated at a resolution of 128x128.

Figure 6 shows a comparison video between TATS and Ours.
Although VQ-VDM is inferior to TATS in quantitative evaluation,
it can be seen that in some of the generation results, the quality of

the two are visually equivalent. Moreover, while TATS frequently
experiences temporal oscillations for the generation of 16 frames,
our method can consistently generate video frames over time.

Table 1 shows a comparison with other class-conditional genera-
tion methods. Although the quantitative evaluation of the proposed
method scores poorly against TATS, it shows competitive results,
outperforming all the other GAN-based methods and CogVideo [7].

Table 2 shows the quantitative evaluation in Sky Time-lapse.
Our method archives state-of-the-art FVD over all the baselines
including TATS on the Sky Time-lapse.

3.3 Sampling Efficiency
We compared the sampling rates of the proposed method and
VDM [6] in units of 100 time steps. Since the original implemen-
tation of VDM is not publicly available, we performed the mea-
surements using a reproduced implementation. Ten measurements
were taken for each method, and the mean and standard deviation
are shown in Table 3.

Table 3 shows that the sampling time of VDM at 100 time steps
is 35.26 seconds, while the proposed method takes 3.95 seconds.
Therefore, the proposed method is 8.92 times faster than VDM. It
should also be noted that the proposed method generates images
with a larger resolution. The proposed method can generate videos
with higher resolution about nine times faster than VDM.

4 CONCLUSION
In this study, we proposed a video generation model VQ-VDM
based on diffusion models with 3D VQGAN. By learning about
the latent variables encoded by 3D VQGAN, it was able to reduce
computational costs compared to Video Diffusion Models which
directly generate videos. So, our proposed method VQ-VDM gener-
ated high-quality video about nine times faster than VDM [6]. Also,
the higher quality videos were able to be generated by using higher
resolution against VDM, and by being based on diffusion models
against the other video generation methods.
Acknowledgments: This work was supported by JSPS KAKENHI
Grant Numbers, 21H05812, 22H00540, 22H00548, and 22K19808.
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