
Mask-based Food Image Synthesis
with Cross-Modal Recipe Embeddings

Zhongtao Chen
Univ. of Electro-Communications

Tokyo, Japan
chen-z@mm.inf.uec.ac.jp

Yuma Honbu
Univ. of Electro-Communications

Tokyo, Japan
honbu-y@mm.inf.uec.ac.jp

Keiji Yanai
Univ. of Electro-Communications

Tokyo, Japan
yanai@cs.uec.ac.jp

Figure 1: Example images synthesized by MRE-GAN from textual recipe embeddings with arbitrary mask shapes, (a) input
recipe texts with the corresponding images, (b) input shape masks, and (c) generated images.

ABSTRACT
In this paper, we propose a Mask-based Recipe Embedding GAN
(MRE-GAN), which enables us to generate a realistic food image
based on a given mask image containing single or multiple food
regions with cross-modal recipe embeddings for each food region.
Thus, we can change meal shapes by modifying mask images, while
by editing recipe text, we can change meal appearance. Our ex-
perimental findings confirmed that the proposed method could
generate higher quality food images than the baselines, and we
could change meal shapes and appearances by editing mask images
and recipe texts as we liked.
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1 INTRODUCTION
With the development of deep learning technology, technologies
of image synthesis and translation have been widely researched in
recent years. The image synthesis technology based on GAN [6] is
rapidly evolving, and the generation of a realistic image has been
achieved. However, generating realistic food images remains a chal-
lenging task because the appearance, particularly the shape of food
preparations significantly varies depending on the ingredients and
instructions specified in a recipe. At the same time, with increasing
interest in health and diet, research on dietary image recognition
has received considerable attention. In particular, with the release
of the large food dataset Recipe1M [13], cross-modal recipe retrieval
between food images and cooking recipes has been actively studied.
Cross-modal recipe retrieval realizes highly accurate recipe search
by projecting image and text features in the same embedded space
to learn modality-invariant representations.

In this paper, we propose a Mask-based Recipe Embedding GAN
(MRE-GAN) that can generate a realistic food image based on a
given mask image containing single or multiple food regions with
cross-modal recipe embeddings for each food region. Thus, we
can change food shapes by modifying mask images and food ap-
pearance by editing recipe texts or changing input food images.
Figure 1 shows some generated images by the proposed method.
We expect that our work helps and promotes new food-related
applications such as an interactive multiple-dish image simulation
system which enables us to obtain completed dish photos of newly-
invented recipes before trying actual cooking.

The proposed GAN was inspired by the idea of Cross-Modal
Recipe Embeddings by Disentangling Recipe Contents and Dish
Styles (RDE-GAN) [15] in which recipe embeddings and shape
features were disentangled when extracting image features. RDE-
GAN could generate high-quality cross-modal recipe embeddings
and food images by integrating recipe embeddings and food shape
features. However, in the RDE-GAN, the disentangled food shape
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features cannot be directly edited, and the shape of the generated im-
ages cannot be manually modified. Therefore, herein, we introduce
region-based image synthesis into cross-modal embedding-based
food image synthesis to generate food images based on arbitrary
shape masks with cross-modal recipe embedding. No recipe-based
image synthesis methods have been able to generate multiple-dish
images thus far. To the best of our knowledge, we believe this is
the first framework that generates food images using a shape mask
image and cross-modal recipe embedding. As cross-modal embed-
dings can be extracted from either images or texts, we can generate
food images from either recipe text embeddings or recipe image
embeddings with a food region mask. We confirmed through com-
prehensive experiments, that our proposed method could generate
higher quality food images even with multiple food items from
recipe texts or given food images with arbitrary shape masks, as
well as higher retrieval accuracy.

To summarize, the contributions of this work are as follows:
(1) We propose an MRE-GAN (Mask-based Recipe Embedding

GAN), which is the first work on mask-based food image
synthesis using cross-modal recipe embeddings.

(2) Through the extensive experiments, we confirmed that the
proposed MRE-GAN could synthesize not only single dish
images but also multiple-dish images, and outperformed the
baselines regarding both the FID scores and the IS scores.

2 RELATEDWORKS
2.1 Cross-Modal Recipe Retrieval
Cross-modal recipe retrieval is a mutual search across modalities
from an image to recipe texts and from a recipe text to images. In
the early study, Salvador et al. created a large dataset, Recipe1M.
They proposed a collaborative, embedded learning approach, Joint
Embedding (JE) [13], combining pairwise cosine loss and semantic
regularization constraints. When performing general cross-modal
joint embedding learning, a CNN is commonly used for encoding
an image into a semantic vector of the image. Conversely, for recipe
texts, an ingredient list and cooking instructions are encoded by
the bidirectional LSTMs.

As an improved approach to JE [13], a Stack Attention Network
(SAN) [2] was proposed to identify food areas in an image to learn
joint embedding features. Later, some improvements have enhanced
the performance by replacing the sine loss optimizer. AMSR [3]
used the recipe’s hierarchical attention with a simple triplet loss.
AdaMine [1] batched all triplet losses in both joint latent space
recipes and image embeddings, leveraging class-guided features.
Additionally, the recent Modality-Consistent Embedding Network
(MCEN) [5] has simplified the training and inference steps and intro-
duced a task-specific encoder for text recipes based on hierarchical
attention.

2.2 Recipe-to-Image Synthesis
Generating images from recipe texts is an inherently difficult task.
Some recent works on cross-modal recipe retrieval [7, 15, 17, 20]
integrated cross-modal recipe embeddings with food image syn-
thesis, enabling us to generate food images from either text recipe
embeddings or image embeddings.

Figure 2: The architecture of MRE-GAN.

R2GAN [20] and ACME [17] introduced GAN-based image gener-
ation in addition to triplet-based joint embedding. R2GAN proposed
a two-level triplet ranking loss. The triplet loss was used in the
generate image space as well as the shared embedding space. A
reconstruct loss was also introduced in the generated image space
to make generated images and input dish images identical. Conse-
quently, cross-modal search performance was improved. However,
R2GAN intended to improve search performance by introducing
image generation rather than generating high-quality dish images.
They generated only 64 × 64 images.

ACME [17] performed a reconstruction of ingredients and ti-
tle category from a visual embedding and a recipe image from a
textual embedding. ACME adopted adversarial cross-modal train-
ing [16]. So a visual embedding made from a recipe image and a
textual embedding made from a recipe text cannot be distinguished
from each other. The other basic parts are the same as those of
AdaMine [1] and R2GAN [20]. Unlike R2GAN, ACME generated
128 × 128 images.

CookGAN [19] exclusively focused on food image synthesis from
recipe texts that evolved R2GANwith the step-by-step up-sampling.
Hence, it generated high-resolution food images based on the inter-
action of ingredients and cooking methods. In addition, CookGAN
enabled the retaining of more detailed visual effects in the gener-
ated images by exploring the causal relationships contained in the
recipe text information. X-MRS [7] further attempted to map the
generated images into the joint embedding space, and used this
embedding representation for recipe retrieval, thereby improving
the accuracy of recipe retrieval.

The most relevant work to ours is RDE-GAN [15], which aimed
to improve the visual quality of image generation by disentangling
image features into recipe style features and dish shape features.
With image feature disentanglement, RDE-GAN improved search
accuracy and quality of the generated food images. However, in
the RDE-GAN, the disentangled shape features were not directly
editable by hand. Therefore, in this paper, we propose introducing
mask-based image synthesis into cross-modal embedding-based
food image synthesis to generate food images based on arbitrary
shape masks with cross-modal recipe embedding.

3 MASK-BASED RECIPE EMBEDDING GAN
3.1 Overview of MRE-GAN
In this study, we propose a Mask-based Recipe Embedding GAN
(MRE-GAN) that generates a food image based on a given region
mask with recipe embeddings. With MRE-GAN, we can generate
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various food images including multiple dishes in any layouts as
shown in Figure 1.

Figure 2 shows the archtecture of MRE-GAN, in which the pro-
posed model has text and image encoders on the left side, and the
parts of text prediction and image reconstruction on the right side.
This architecture is based on the idea that embedding only the
image feature of a food region into the shared space is expected
to improve the quality of the generated image. We extract image
features of food regions and a background region separately based
on a given shape mask. This is because the feature extracted from
the whole food image includes both the food regions and non-food
backgrounds such as tableware and a part of a table; hence by
providing a mask for the food part, only the food features can be
extracted for the training of cross-modal embeddings.

3.2 Training of Cross-modal Embedding
A pair of a food image and the corresponding mask are provided to
the mask-based image style encoder, 𝐸𝑉 . A foreground food image
feature and a background image feature are extracted from both
the foreground food masks and background region separately. Each
feature is a 1024-dimensional vector. The recipe text encoder, 𝐸𝑅 ,
encodes an ingredient list via a bidirectional LSTM and a cooking
instruction via a hierarchical LSTM into a recipe text vector, the
same as that done in JE [13].

Next, the food image feature and the recipe text vector are passed
through the fully connected layer with the shared weights to cor-
relate the representation of both modalities with each other and
embedded in the joint space. The triplet loss [14] which is a typical
distance learning loss is used to embed the recipe embedding, 𝑅, and
the image embedding, 𝑉 , in the jointly shared space with the hard
sample mining trick [8]. When calculating triplet losses, Hermans
et al. [8] improved performance by choosing the hardest positive
and negative samples for each anchor point in each batch. The
triplet sample (𝑥𝑎, 𝑥𝑝 , 𝑥𝑛) means that 𝑥𝑎 is an anchor point for one
modality and is used as ground truth for evaluating the embedding
of the corresponding modality. In contrast, 𝑥𝑝 and 𝑥𝑛 indicate the
embedding of positive and negative features from another modality.
The triplet loss ensures that a positive instance of one modality
is closer to the anchor point of another modality and a negative
instance of one modality is away from the anchor point of another
modality. The triplet loss is represented by the following equation:

𝐿𝑇𝑟𝑖 =
∑︁
𝑉

[𝑑 (𝑉𝑎, 𝑅𝑝 ) − 𝑑 (𝑉𝑎, 𝑅𝑛) + 𝛼]+

+
∑︁
𝑅

[𝑑 (𝑅𝑎,𝑉𝑝 ) − 𝑑 (𝑅𝑎,𝑉𝑛) + 𝛼]+

where [𝑧]+ = max(𝑧, 0). (1)

In addition to triplet loss, to adjust the distribution of the en-
coded features more, a modality discriminator, 𝐷𝑀 , is also adopted
such that it cannot be distinguished whether the feature vector
is obtained from the image or the text. This idea was originally
proposed in [16]. The Modality Alignment loss, 𝐿𝑀𝐴 , is represented
as follows:

𝐿𝑀𝐴 = 𝐸𝑖∼𝑝𝑖𝑚𝑎𝑔𝑒
[log(𝐷𝑀 (𝐸𝑉 (𝑖)))]

+ 𝐸𝑟∼𝑝𝑟𝑒𝑐𝑖𝑝𝑒 [log(1 − 𝐷𝑀 (𝐸𝑅 (𝑟 )))] (2)

Figure 3: The part of the image encoder and generator.

3.3 Cross-Modal Translation
The previous studies [17, 20] have shown that the learned embed-
ding of one modality allows the corresponding information of the
other modality to be recovered, and improves semantic alignment.
This has proven to enhance the consistency of the cross-modal
transformation and it improves the representation of the learned
embedding. Specifically, the recipe embedding, 𝑅, generates food
images, and the visual embedding, 𝑉 , is used to predict recipe in-
gredients. Therefore, our study aims to generate high-quality food
images based on a food shape mask and cross-modal embeddings
by adding a conditional GAN to the proposed network. We adopt a
mask-based image encoder network that simultaneously extracts
the corresponding style code from each semantic area of a given
image. In our case, the features of semantic areas are extracted from
foreground food areas and the background area independently ac-
cording to the food shape mask corresponding to an input image.

As shown in Figure 3, the input of the input encoder is a set of
food image and mask image, and the output of the image encoder is
a set of 1024-dimensional feature vectors. Unlike a standard encoder
built on a simple down-sampling convolutional neural network, our
per-region style encoder employs a “bottleneck” structure to remove
the information irrelevant to styles from the input image and obtain
high resolution feature maps. In addition, considering that the style
does not depend on the shape of the semantic region, the inter-
mediate feature map generated by the network block, Transposed
Convolutional Layers (TConv-Layers), is passed to the region-wise
average pooling layer and reduced to a 1024-dimensional vector
for each of the foreground and background regions.

The cross-modal translation consistency losss, 𝐿𝐶𝑟𝑜𝑠𝑠 , is defined
as the following formula:

𝐿𝐶𝑟𝑜𝑠𝑠 = 𝐿𝐺𝑟2𝑖 + 𝐿𝑖2𝑟 , (3)

where 𝐿𝐺𝑟2𝑖 and 𝐿𝑖2𝑟 represent recipe-to-image and image-to-recipe
consistency losses, respectively.

3.3.1 Image Generation from Recipe Embedding and Food
Shape Mask. To generate a food image from the cross-modal
recipe embeddings, first, we need to provide a food shape mask,
recipe embeddings, and a background image feature to a generator.
When the mask contains multiple types of food regions, we need
to prepare a recipe embedding vector for each food region. As an
architecture of the generator, we adopt a conditional generator
employing Semantic REgion-Adaptive Normalization (SEAN) [21].
The modulation parameters are controlled by a region mask, recipe
embedding and a background image feature. A conditional normal-
ization technique, SEAN, is used to establish fine control over the
style of the image in each semantic region such that we can add the
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different textures corresponding to recipe embeddings or a back-
ground image feature to each of the food regions and a background
image feature to the background region.

For training of the image synthesis part, the image encoder
is trained to extract region-by-region style codes from the input
image according to the corresponding segmentation mask. The
generator is trained to reconstruct the corresponding food image by
providing the recipe embeddings for food regions and a background
feature vector for a background region based on the corresponding
semantic mask. Following SPADE [12] and SEAN [21], the input
and reconstructed images are evaluated by the loss function, 𝐿𝐺𝑟2𝑖 ,
consisting of three loss terms: Adversarial loss, Feature matching
loss, and Perceptual loss.

The loss function 𝐿𝐺𝑟2𝑖 is given as follows:

𝐿𝐺𝑟2𝑖 = min
𝐸,𝐺

(( max
𝐷1,𝐷2

∑︁
𝑘=1,2

𝐿𝐺𝐴𝑁 ) + 𝛾1
∑︁
𝑘=1,2

𝐿𝐹𝑀 + 𝛾2𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡 ) (4)

We set 𝛾1 = 𝛾2 = 10 following SPADE and SEAN.
For Adversarial loss, the formulation of conditional adversarial

learning is expressed as follows:

min
𝐸,𝐺

max
𝐷1,𝐷2

∑︁
𝑘=1,2

𝐿𝐺𝐴𝑁 (𝐸,𝐺, 𝐷𝑘 ) = 𝐸 [max (0, 1 − 𝐷𝑘 (𝑅,𝑀))]

+ 𝐸 [max(0, 1 + 𝐷𝑘 (𝐺 (𝑆𝑇 ,𝑀), 𝑀))]
(5)

where 𝐸 is the image encoder,𝐺 is the generator employing SEAN,
𝐷1 and 𝐷2 are the two classifiers of different scales, 𝑅 is the given
recipe’s image, 𝑀 is the corresponding segmentation mask of 𝑅,
and 𝑆𝑇 is the feature matrix combined with recipe embeddings and
background feature vector.

For Feature matching loss, let 𝑇 be the total number of layers in
the discriminator 𝐷𝑘 , and let 𝐷

(𝑖)
𝑘

and 𝑁𝑖 is the output feature map
and the number of elements of the 𝑖−th layer of 𝐷𝑘 , respectively.
Feature Matching loss, 𝐿𝐹𝑀 , is expressed as follows:

𝐿𝐹𝑀 = 𝐸

𝑇∑︁
𝑖=1

1
𝑁𝑖

[∥ 𝐷 (𝑖)
𝑘

(𝑅,𝑀) − 𝐷
(𝑖)
𝑘

(𝐺 (𝑆𝑇 ,𝑀), 𝑀) ∥1] (6)

For Perceptual loss, let 𝑁 be the total number of layers used to
calculate perceptual loss, 𝐹 (𝑖) be the output feature map of the 𝑖-th
layer of the VGG network, and 𝑀𝑖 be the number of elements of
𝐹 (𝑖) . The perceptual loss, 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡 , is expressed as follows:

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡 = 𝐸

𝑁∑︁
𝑖=1

1
𝑀𝑖

[∥ 𝐹 (𝑖) (𝑅) − 𝐹 (𝑖) (𝐺 (𝑆𝑇 ,𝑀)) ∥1] (7)

3.3.2 Text Prediction from Image Embedding. By applying
the multi-label classifier to the visual feature,𝑉 , which predicts the
components of the food image, image embedding can be classified
into the correct food category, thereby maintaining the consistency
of the translation. Although adversarial loss can generate a real-
istic image, the conversion might be inconsistent. Therefore, the
generator is appropriate by embedding the generated image in a
shared space and predicting the components in that embedding,
encouraging generation of a food image in the corresponding food
category.

When classifying image embeddings, 𝑉 , we classify 1047 classes
by title and 4102 classes using the multi-label ingredient list. The

recipe prediction loss function, 𝐿𝑖2𝑟 , is expressed as follows:

𝐿𝑖2𝑟 = 𝐿𝑇𝑖𝑡𝑙𝑒 (𝑉 ,𝐺𝑇𝑡𝑖𝑡𝑙𝑒 ) + 𝐿𝐼𝑛𝑔 (𝑉 ,𝐺𝑇𝑖𝑛𝑔) (8)

where cross entropy loss by title classifier and ingredient classifier is
𝐿𝑇𝑖𝑡𝑙𝑒 , 𝐿𝐼𝑛𝑔 , the ground-truth label for title classification is𝐺𝑇𝑡𝑖𝑡𝑙𝑒 ,
and the ground-truth label for ingredient classification is 𝐺𝑇𝑖𝑛𝑔 .

3.4 Single Modal Translation Consistency
In ACME [17], only cross-modal consistency was considered. In
contrast, in our work, we take account of translation consistency
within the single modal as well. The single modal translation con-
sistency loss can be defined as follow:

𝐿𝑆𝑖𝑛𝑔𝑙𝑒 = 𝐿𝑟2𝑟 + 𝐿𝑖2𝑖 (9)

In the sameway as 𝐿𝑖2𝑟 , text embeddings are classified by the title
and the multi-label ingredient list. The recipe-to-recipe consistency
loss, 𝐿𝑟2𝑟 , is represented as follows:

𝐿𝑟2𝑟 = 𝐿𝑇𝑖𝑡𝑙𝑒 (𝑇,𝐺𝑇𝑡𝑖𝑡𝑙𝑒 ) + 𝐿𝐼𝑛𝑔 (𝑇,𝐺𝑇𝑖𝑛𝑔) (10)

The image-to-image consistency loss, 𝐿𝑖2𝑖 , enforces that the im-
age embedding of a generate image, 𝑉𝑓 , is identical to the image
embedding of the original image, 𝑉 , and the generated image, 𝐼𝑓 ,
looks the similar as the original image, 𝐼 . The loss can be defined
as follows:

𝐿𝑖2𝑖 = 𝐿𝑅𝑒𝑐𝑜𝑛 (𝑉𝑓 ,𝑉 ) + 𝐿𝑃𝑖𝑥𝑒𝑙 (𝐼𝑓 , 𝐼 ), (11)

where 𝐿𝑅𝑒𝑐𝑜𝑛 and 𝐿𝑃𝑖𝑥𝑒𝑙 are represented by the L1 loss and the L2
loss (MSE loss), respectively.

3.5 Total Loss
As mentioned above, we use the four losses, Triplet loss, 𝐿𝑇𝑟𝑖 ,
Modality Adversalial loss, 𝐿𝑀𝐴 , Cross-Modal loss, 𝐿𝐶𝑟𝑜𝑠𝑠 , and Sin-
gle Modal loss, 𝐿𝑆𝑖𝑛𝑔𝑙𝑒 . The total objective function can be defined
as follows:

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑇𝑟𝑖 + 𝜆2𝐿𝑀𝐴 + 𝜆3𝐿𝐶𝑟𝑜𝑠𝑠 + 𝜆4𝐿𝑆𝑖𝑛𝑔𝑙𝑒 , (12)

where 𝜆1,...,4 represents the loss weight of each loss function.

4 EXPERIMENTS
4.1 Datasets, Metrics and Implementation
Dataset: All the experiments were conducted using the standard
large-scale recipe dataset, Recipe1M [13], containing over 1 mil-
lion recipes and images. We adopt the original data splits using
238,999 image-recipe pairs for training, 51,119 pairs for validation,
and 51,303 pairs for testing. As the original Recipe1M has no region
mask data, the food shape masks were automatically generated
for all the images of Recipe1M using the method of “unseen food
image segmentation” [10] which employed zero-shot segmenta-
tion [9] with the food image segmentation dataset, UEC-FoodPix
Complete [11] as the base set. The detail is explained in the sup-
plementary material. In addition, DeepLabV3+ [4] trained with
UEC-FoodPix Complete was also used to generate food masks for
comparison. The food masks generated by the unseen food method
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Table 1: Comparison of image quality by the FID score (↓)
and the IS score (↑).
Method Text2Img(FID↓) Img2Img(FID↓) Img2Img(IS↑)
ACME[17] 390.52 391.29 2.19±.09
RDE-GAN[15] 83.82 84.31 6.99±.07
CookGAN[19] − − 5.41±.11
X-MRS[7] 28.60 27.90 −
Ours (MaskDeepLabV3+) 56.72 56.11 −
Ours (Maskunseen) 27.44 27.12 8.27±.05

achieved 73.0% MIoU (evaluated by 691 ground-truth masks in-
cluded in the FoodSeg103 dataset [18]), while the food masks gen-
erated by the trained DeepLabV3+ achieved 54.1% MIoU. This indi-
cated that the food masks generated by the unseen food method
were much better.
Metrics: The Fréchet inception distance (FID) is a metric used
to assess the quality of images created by a generative model. A
lower value of FID indicates better visual diversity and quality.
We randomly sample 1,000 recipes from the test set for image
generation.
Implementation Details: In the experiments, we used the Adam
optimizer for training the whole network with an initial learning
rate of 10−4, which was decreased after 50 epochs to 10−5. The
proposed model was trained with a total of 100 epochs. As the
loss weights, we set 𝜆1 = 1.0, 𝜆2 = 0.005, 𝜆3 = 0.002, and 𝜆4 =

0.002, respectively. We empirically decided the value of each of the
loss weights by referring the weights used in RDE-GAN [15] and
ACME [17]. Basically, we adjusted the weighting constants so that
each of the losses affected to the total loss equally. The resolution
of the synthesized images is 256 × 256.

4.2 Evaluation of image generation
4.2.1 Quantitative Results. We show the comparison of MRE-
GAN with the baselines on the quality of generated images in
Table 1. As the baselines, we used ACME [17], RDE-GAN [15],
CookGAN [19] and X-MRS [7]. In order to quantitatively evaluate
the quality of generated image, we use FID tomeasure how close the
distribution of original image and generated image is. In addition,
we used Inception Score (IS) for comparison to CookGAN since the
results of CookGAN were evaluated by only IS in the paper [19].

We trained two models, for training Ours (MaskDeepLabV3+) of
the proposed model, the shape mask of Recipe1M was calculated by
theDeepLabV3+model of pre-trained. For trainingOurs (Maskunseen)
of proposed model, the shape mask of Recipe1M was calculated by
“unseen food image segmentation” [10].

From these results, our method clearly achieved the best quality
over all the baselines including X-MRSwhich was the current SOTA.
In addition, the results with the masks generated by DeepLabV3+
were much degraded from Ours (Maskunseen), which reflected the
segmentation accuracy (Unseen 73.0 vs DeepLabV3+ 54.1 in MIoU).
Using more accurate masks is important for generating the higher-
quality images.

4.2.2 Ablation Studies. We made the ablation studies on the
losses related to the single modal translation consistency, since the
effectiveness of the cross-modal consistency was confirmed in the
existing works [15, 17]. Note that for all the ablation studies, we
used the masks generated by the unseen food image segmentation
method [10].

Table 2: Ablation studies.

Method Text2Img(FID↓) Img2Img(FID↓)
Without 𝐿𝑖2𝑖 , 𝐿𝑟2𝑟 40.92 42.66
Without 𝐿𝑖2𝑖 42.63 45.25
Without 𝐿𝑟2𝑟 43.53 43.61
Without 𝐿𝑝𝑖𝑥𝑒𝑙 31.34 34.51
ALL(Maskunseen) 27.44 27.12

Figure 4: Comparison of synthesized images.

Table 2 shows the results, which indicates that the results without
both or either 𝐿𝑖2𝑖 or 𝐿𝑟2𝑟 were degraded from the results with the
full loss. Both the losses including 𝐿𝑃𝑖𝑥𝑒𝑙 were proven to be helpful
for improvement of the image quality.

4.2.3 Qualitative Results. A comparative experiment, as shown
in Figure 4, was performed to evaluate the visual quality of the
generated image with the baseline methods quantitatively. The first
column is ground truth corresponding to the recipe embedding
used for image generation, and the second and the third column
are the images generated by the baseline method ACME [17] and
RDE-GAN [15]. The two columns from the right are images gener-
ated by the proposed model trained on different shape masks data.
Compared with the baselines, it is shown that our proposed method
can generate a realistic food image while maintaining the shape
of the food. Moreover, the generated images with zero-shot food
masks look more similar to the ground truth images than those
with the standard segmentation, DeepLabV3+, masks.

The proposed model can generate images from either recipe text
embeddings or visual image embeddings. To verify how different
the images generated from the corresponding recipe and image
embeddings, we generated food images from both embeddings as
shown in Figure 5. Comparing the generated images in the third and
fourth columns, it is considered that the images generated by text
embeddings and the corresponding image embeddings are almost
the same. This means that the proposed method can embed the
corresponding recipe text and food image into almost the identical
point in the shared space.

4.2.4 Food Image Generation Manipulability. The results of
generating food images with multiple dishes are shown in Figure 6.
They are generated with the embeddings from recipe style 1 as the
style of green region and the embedding from recipe style 2 as the
style of pink region. Note that tag cloud images in the row of style
1 and style2 means that recipe text embeddings were used as food
embeddings for mask-based food image synthesis.
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Figure 5: Food image generation from recipe text embeddings
and image embeddings.

Figure 6: Multiple-dish food image generation.

Figure 7: Food image generation with different shape masks.

Figure 8: Changes in the generated image due to the operation
of the input text.

As shown in the rightmost row of Figure 1, combining three
or four dishes is also possible. As shown in the second column of
Figure 6, we can use both recipe embedding and image embedding
for different regions. To our best knowledge, this is the first work
to generate multiple dish images from either recipe text embedding
or food image embedding.

As the next results, we show the images generated from different
food shape masks and the fixed recipe embedding in Figure 7. From
this result, our proposed model can generate foods of any shapes
by changing the shape of the input mask. However, we have a
limitation on controlling the shape of the plates. Since food masks
do not contain the region of plates, the plates are generated so as
to surround the food mask, and the generated plates are sometime
distorted.

Figure 9: Images generated by gradually changing the embed-
dings between two target samples via linear interpolation.

Next, we conduct an experiment to verify what type of effect the
change in input ingredients has on the generated image. According
to Figure 8, when adding, deleting or replacing some ingredients
in the recipe texts, the generated food image accordingly changed
slightly. For example, in the first column, comparing the generated
image after adding orange juice with the generated image before
adding the juice, we found that the generated image also changed
correspondingly after adding orange juice to the input ingredients.
The same holds true for the other two cases where beef tenderloin
was removed and tomatoes was replaced with eggplants.

Finally, we verified how the generated image changes when
the recipe embedding continuously changes. If the space of the
recipe embedding can be continuously expressed, the generated
complementary image changes smoothly. This result is shown in
Figure 9. It is a shape mask corresponding to the recipe embedding
as an input, and is an image shown in the right column as a target. In
the third line, it can be observed that the generated image changed
smoothly, continuously and simultaneously with the change in the
semantic embedding of the elements such as the color and texture
of the pizza while maintaining the input shape mask. Thus, the
proposed model also provides the expressive power of high-level
features required for image generation.

5 CONCLUSIONS
In this study, we have proposed a new framework, Mask-based
Recipe Embedding GAN (MRE-GAN), which synthesized food im-
ages from cross-modal recipe embeddings based on a given food
segmentation mask. To the best of our knowledge, this is the first
work on the combination of cross-modal embeddings and mask-
based image synthesis, the major advantage of which is that we
can generate images by combining a mask drawn by hand and text
embeddings for each of the regions. Although MRE-GAN requires
food region masks for training, we added food region masks to all
the Recipe1M images using “unseen food image segmentation” [10]
which enabled us to annotate food region masks to all the training
images automatically with high accuracy. Finally, we confirmed
through comprehensive experiments, that our proposed method,
MRE-GAN, could generate high quality food images even with
multiple food items from recipe texts or given food images with ar-
bitrary shape masks, as well as high retrieval accuracy. In addition,
we also showed that food image manipulation was clearly possible
by changing the shape of a food mask or editing recipe texts.
Acknowledgments: This work was supported by JSPS KAKENHI
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