StableSeg: Stable Diffusion によるゼロショット領域分割

本部 勇真,^{a)} 山口 廉斗,^{b)} 柳井 啓司,^{c)}

概要

本研究では、50億もの画像テキストペアを学習した、拡 散モデルに基づくテキストからの画像生成モデルである Stable Diffusion を利用して、追加学習せずに高速に任意 のテキストに対応した領域を抽出可能なセグメンテーショ ン手法 StableSeg を提案し、その有効性を示す.

1. はじめに

近年,深層学習の発展によりセマンティックセグメン テーションの分野は大幅に性能が向上し,ここ数年では, 大規模事前学習モデルを再利用して学習コストを削減す るタスクや,あらゆるクラスに対応させるタスクが注目さ れている.その中でもゼロショットセグメンテーションで は,大規模事前学習モデルがセグメンテーションに特化し ていないため多くの研究でアノテーションデータを用いた 追加学習を必要とする問題がある.そのため,依然として 学習コストやアノテーションデータを作成するコストの削 減はできていない.

それに対して、本研究では、50 億もの画像テキストペ アを学習した、大規模な視覚言語拡散モデルである Stable Diffusion を使用することで追加学習することなくセグメン テーションを可能にする手法を提案し、コスト削減の実現 とその有用性を示す.

本論文の主な貢献は次の通りである.

- 学習済 Stable Diffusion の cross-attention を利用する ことで、追加学習が一切不要なゼロショット領域分割 を実現する StableSeg の提案.
- Cross-attention map に self-attention を組み合わせる self-attention refinement と, propmpt を工夫する方 法によって精度向上することの提案.
- 疑似マスクで cross-attention map の重み付けを学習し、再度、疑似マスクを生成してセグメンテーション モデルを学習する StableSeg++の提案.

2. 関連研究

2.1 ゼロショット領域分割

ゼロショット領域分割 (Zero-shot Segmentation) では, テキストデータのみで分布外データに対する領域分割を実 現することを目的としている. このタスクでは,学習時と テスト時のカテゴリには共通部分が存在しないため,テス ト時の入力には未知のカテゴリのクエリ画像に対して,カ テゴリ名のテキストが条件として与えられることで未知の カテゴリを領域分割する. ゼロショット領域分割では,事 前に同じドメインの大規模データで事前学習したバック ボーンの特徴と,テキスト埋め込みに基づく関係性を学習 させることで,未知カテゴリの領域分割を学習データなし で実現する.

近年、大規模な画像テキストペアデータの類似度をニュー ラルネットワークに学習させた大規模視覚言語モデルが 注目され、このモデルを使い様々なタスクをゼロショット で解くという傾向が深層学習ではトレンドになっている. その中の1つである CLIP [1] は, 最初に学習済みモデル が公開されたモデルであり,様々なタスクで使用されてい る. CLIP を用いたゼロショット領域分割もすでに提案さ れており, Zhouら [2] の MaskCLIP という手法では,学 習済みの CLIP を使用し, backbone で画像から特徴を抽 出し、この特徴マップに対して、ターゲットテキスト特徴 を重みにした畳み込み演算によって、ゼロショット学習で ピクセル単位の分類を実現した手法である.本論文での提 案手法 StableSeg と同じくテキストのみからあらゆるクラ スに対して領域分割を可能としている手法である. さらに MaskCLIP では、MaskCLIP で生成したマスクを疑似マス クとして DeepLabV2 [3] を学習させることでより高性能な 領域分割 MaskCLIP+を実現した.

他にも CLIP を用いた手法として Lüddecke らが提案し た CLIPSeg [4] と呼ばれる手法があるが,こちらのゼロ ショット手法ではセグメンテーションモジュールを外部ア ノテーションデータを用いて学習を行う必要がある.それ に対して,StableSeg では自己教師あり学習を採用するこ とで外部データを一切使用せずにゼロショット領域分割を 実現する.

2.2 拡散モデル

近年, 拡散モデル (DM) が画像生成タスクで大きな成果 を収めている. Ho ら [5] によって提案されたノイズ除去拡 散確率モデル (DDPM) では,入力画像に連続的にガウシ アンノイズノイズを与え,画像から各ステップのノイズを ニューラルネットワークで推定することで元画像を復元さ せることを何回も繰り返し徐々にノイズを除去していくこ とによって画像を生成する手法であり,拡散モデルを急速 に発展させたモデルである.

¹ 電気通信大学 大学院情報理工学研究科 情報学専攻

a) honbu-y@mm.inf.uec.ac.jp

b) yamaguchi-r@mm.inf.uec.ac.jp

^{c)} yanai@cs.uec.ac.jp

図1 StableSeg のアーキテクチャ

特に近年, Stable Diffusion はテキスト入力に沿った高品 質な画像を生成することができるモデルであるとして注目 されている. Stable Diffusion は拡散モデルの一種である Latent Diffusion Model (LDM) [6] というモデルが使用さ れており, LDM では入力画像を Variational Autoencoder (VAE) [7] で潜在空間に圧縮したものに対してガウシアン ノイズを付与し,様々な条件を加えることのできる U-Net アーキテクチャを使ってノイズを除去し,デコーダーを使い 画像へと復元させるモデルである.特に Latent Diffusion Model の条件付けに CLIP [1] と呼ばれる大規模視覚言語 モデルのテキストエンコーダーを使用してテキストで潜在 空間に対して条件付けを行い,さらに LAION-5B [8] と呼 ばれる 50 億枚の画像テキストペアデータセットで学習さ せたものを Stable Diffusion と呼ぶ.

Hertz ら [9] の提案した Prompt-to-Prompt と呼ばれる 手法では, 拡散モデルベースの画像生成モデルで使用され ているアテンション層のクロスアテンションマップを利用 して, 生成される画像の空間レイアウトや形状を制御する 手法を提案している.これによって, プロンプトのテキス トのみを編集することで様々な画像編集を可能としてい る.本手法ではこの手法に触発され, 精度高いアテンショ ンマップの情報をセグメンテーションタスクに転用するこ とができるのではないかと考えた.

Burgert らの Peekaboo [10] でも Stable Diffusion を使っ たゼロショット領域分割手法を提案されているが,追加 ネットワークの反復最適化による学習が必要なため1枚あ たり2分程度の時間が掛かる欠点がある.一方,本手法で 提案する StableSeg では拡散モデルの1ステップのみ,つ まりノイズ推定のための UNet の評価を一度行うのみで処 理時間は1秒未満であり,さらに追加学習や最適化は一切 不要であるため,高速かつ低コストなゼロショット領域分 割を実現している.

3. 手法

3.1 StableSeg

本手法では、Stable Diffusion の U-Net に使用されている Transformer に注目し、条件ベクトルが与えられる Cross Attention を使ってセグメンテーションを実現する。Stable Diffusion の Transformer Block は U-Net に複数存在 し、各 Transformer で入力特徴同士の Self-Attention と条 件ベクトル $\phi(C)$ との Cross-Attention が組み込まれてい る。Cross-Attention では時間 T のノイズベクトル z_T を

図 2 StableSeg++のアーキテクチャ図

U-Net(ϕ) で抽出した入力特徴 $\phi(z_T)$ に対して線形変換層 l_Q を使って Query とし、テキスト C の埋め込み f(C) を 2 つの線形変換層 l_V , l_K を使用して Key、Value とする. そして Key と Query の内積を取りスケーリング (\sqrt{d}) し た後に Softmax を計算したものが Attention Map として Value と積を取り次の層への特徴として利用されていく仕 組みになっている. この計算は以下の式 1, 式 2 のように 表される. そしてこの Attention Map は与えられたテキス トのトークン毎に得ることができる.

$$Q = l_Q(\phi(z_T)), K = l_K(f(C)), V = l_V(f(C))$$
(1)

AttentionMap = Softmax
$$(\frac{QK^T}{\sqrt{d}})$$
 (2)

提案する手法では Stable Diffusion で使用されるすべて の Transformer Block から Attention Map を抽出し Cross-Attention の確率マップ (Cross-Attention Probability Map, CAPM) として使用する.

さらに, Self-Attention 層に使用される Query と Key と Cross-Attention で生成されるクラスマップ (CA Map) を 使ってセグメンテーションマスクを洗練する Self-Attention Refinement (SAR)を提案する.まず最初に、図1の赤色 の矢印で表される通り、CAPM を argmax によってクラス マップ (CA Map) にする.次に図 1 の緑色の矢印に注目 する. この部分では、すべての Self-Attention 層で利用さ れる Key を特徴マップに変換し、各クラスマップの領域で クラスごとの平均ベクトルを計算し、画像内のそのクラス を表現する代表ベクトル (class vector) を生成する. それ を新たな Key として式 2 と同様に Self-Attention の Query 特徴を使用して、クラスごとに Attention Map を計算し Self-Attention のクラスマップ (SA Map) の元となる確率 マップ (Self-Attention Probability Map, SAPM) を計算す る. そして最後に CAPM と SAPM を合計し最終クラス マップにすることで最終的なセグメンテーションマスクが 完成する. このモデルを StableSeg とする.

また,ノイズ除去のステップは time embedding t = 1の 1ステップのみのアテンションマップを使用することで,1 枚当たり約2秒以下でセグメンテーションすることができ る. StableSeg のアーキテクチャは図1の通りである.

3.2 StableSeg++

生成した疑似マスクで教師ありモデルを学習する MaskCLIP+ [2] と同様に、本研究でも疑似マスクの学 習による精度向上を図る. これを StableSeg+と呼ぶ. さ らに本研究では, StableSeg+で生成した疑似マスクを使っ て StableSeg の推論時に使用される複数のアテンション マップの最適な重みを最適化することも行い, それで生成 生成した疑似マスクでさらに教師ありモデルを学習する StableSeg++も提案する.

図 2 に示すように、最初に StableSeg を使って疑似マ スクを生成し、この疑似マスクに Fully Connected CRF (DenseCRF) [11] を使用し、疑似マスクを修正する.その 後 DeepLabV3+ [12] を使用してこの疑似マスクを教師デー タとして学習する.次に Step2 では、StableSeg+で推論 したマスクを教師データとして StableSeg のアテンション マップの重みパラメータを最適化する.標準の StableSeg では U-Net の各レイヤから抽出したアテンションマップ を均一重み^{*1}で平均していたが、DeepLabV3+が出力した 疑似マスクを擬似正解データとして、これに近づくように すべてのアテンションマップに関して重みを学習すること で、さらなる精度向上が期待できる.さらにアテンション マップの重みを学習した StableSeg で生成したマスクを用 いて StableSeg+の DeepLabV3+を再学習する、

以上のように,重み推定を挟んで,StableSeg, DeepLabV3+を繰り返すことで外部のアノテーションデー タを使用することなくセグメンテーションモデルの精度を 向上させることができる.

4. データセット

提案手法ではあらゆるテキストに対してセグメンテー ションマスクを生成することができるため、様々なデー タセットで実験する. 一般物体 20 クラスで構成されてい る Pascal VOC (PAS-20) [13], 一般物体 60 クラスで構成 されている Pascal Context (PC-59) [14], 100 クラスで構成 されている Pascal Context (PC-59) [14], 100 クラスの食 事クラスで構成されている UECFoodPix (FoodPix), 103 種類の食材で構成されている FoodSeg103 (FoodSeg) [15], 物体,物体パーツ,もの (stuff) の 3 区分の,計 150 種類の クラスが画素単位でアノテーションされている ADE20K (A-150) [16], 50 都市の街路景観で撮影された 18 クラスの Cityscapes (City) [17] で実験を行った.なお,入力画像サ イズは 512x512 に統一した.

5. 実験

StableSeg は 50 億テキスト画像ペアで学習済みの Stable Diffusion を使い,時間埋め込みはt = 1を使用することで, Stable Diffusion における最後のノイズ除去過程を再現す るようにした. t = 1のみのノイズ除去過程で抽出される Attention を使用するため,画像一枚の処理時間は 2 秒以 内で済んでいる.入力画像にはノイズを混ぜずに VAE で 潜在空間に圧縮し U-net に入力することで元画像に近いア テンションマップを習得した.

StableSeg では入力画像を 512x512 とした場合, U-net の各層から縦横がそれぞれ 8, 16, 32, 64 ピクセル *²の

表1 各データセットでの定量評価

	PAS-20	PC-59	A-150	City	FoodPix	FoodSeg
MaskCLIP [2]	44.7	37.9	26.0	21.6	33.2	37.0
StableSeg (ours)	50.3	36.2	23.6	15.1	63.3	49.1
表 2 SAI	R の違い	による各	データー	セットつ	での定量評	価

-								
	w/ SAR	50.3	36.2	23.6	15.1	63.3	49.1	
	w/o SAR	47.2	31.0	19.4	12.7	53.8	39.3	
	only Self	47.1	33.6	22.5	13.3	65.4	50.0	

表 3 self/cross attention map において異なるスケール使用時の定 量評価 (mIoU)

	PAS-20			PC-59		
self	16	32	64	16	32	64
16	49.1	50.1	50.3	35.1	35.9	36.2
32	50.0	51.1	51.3	34.4	35.2	35.5
64	50.3	51.3	51.4	33.2	33.9	33.9
		A-150			City	
16	23.0	23.5	23.6	14.9	15.0	15.1
32	22.5	22.9	22.9	13.2	13.4	13.3
64	21.8	22.1	22.0	13.2	13.3	13.1
	FoodPix			FoodSeg		
16	62.3	63.2	63.3	46.5	48.3	49.1
32	63.0	63.9	64.0	46.0	47.9	48.8
64	63.7	64.5	64.5	45.3	47.1	47.7

self/cross アテンションマップが抽出される. SAPM は正 確な CA Map を必要とするため,実験では指定がない限 り, Cross-Attention にはスケールが 8, 16 のアテンション マップを平均したものを使用し, Self-Attention には,全 スケールの Query, Key 特徴すべてを使用した. 比較対象 とするモデルには MaskCLIP [2] を使用し,それぞれのモ デルへの入力には入力画像とその画像内に含まれるカテゴ リ名のプロンプトを入力とした.

5.1 複数データセットにおける従来手法との比較

表 1 の定量評価の結果より, MaskCLIP [2] では, 主に 一般物体で構成されている PAS-20, PC-59, A-150 データ セットで StableSeg と近い評価値が得られるのに対して, StableSeg では, MaskCLIP と比較して食事データセット で精度が高くなることが判明した. これは CLIP よりも Stable Diffusion が食事データなどの固有ドメインに対し てもより豊富な表現力を持っていると考えられる.

また,図3の結果よりStableSegではMaskCLIPと比較 するとノイズが少なく,様々なデータに対して正確に物体 を捉えることができていることが分かる.

5.2 Self-Attention Refinement の効果検証

表2の結果より,Self-Attentionを使ったセグメンテー ションマスクの洗練はCAPMのみで作成したクラスマス クよりも改善することが分かった.要因としては,Self-Attentionはピクセル同士の類似度を取るのに特化するよ うに学習しているため,対象領域のベクトルを使うことで, より良い確率マップが得られたと考えられる.また,食事 データに関してはSelf-attentionのみの場合が最も良い精 度となった.

5.3 アテンションマップのスケールの違いによる性能評価

表 3 に Cross/Self Attention Map のスケールの違いに よる実験結果を示す.スケールにはマップサイズとして 8, 16, 32, 64 が存在するが,意味的な領域を最も捉えること のできる 8 のスケールは必ず使用しているため,表では省 略している.表中の記述は,例えば,(cross,self) = (64,32)

^{*1} cross-attention に関しては 8, 16 スケールのみ利用.

^{*2} 以下,スケール 8,16,32,64と呼ぶ.

図 3 従来手法との比較例 (左: PC-59, 右: FoodSeg)

図 4 時間埋め込みを変化させたときの領域分割例

は, Cross Attention Map で使用するスケールが 64 以下の すべてのマップの合計かつ, Self Attention Map で使用す るスケールが 32 以下のすべてのマップの合計という意味 になる.

結果より,データセットごとに cross/self の最適なス ケールが異なり,FoodPix では (cross,self) = (64,32) が最 大値, PAS-20 では (64,64), PC-59, A-150 と foodseg で は (16,64), City では (16,16) であることが分かった.提案 手法では cross attention のマップをもとに Self-Attention マップを作るため, cross のスケール値に self が左右されて いると考えられる. ここで cross の値に注目すると,A-150, City, PC-59, FoodSeg が 16 であることが分かる. cross の スケールが小さいほどより意味的な部分が抽出される一方 で輪郭などの詳細な部分が抽出されないといった特徴があ ると考えられる.

5.4 異なる時間埋め込みによる性能検証

StableSeg の時間埋め込み t を変化させると図 4,表 4 のような結果となった.実際の Stable Diffusion では t が 大きいほどガウスノイズに近づいた画像を復元する際に使 用するため、生成する物体の位置を大まかに決めるアテン ションマップが得られると考えられ、t が小さくなるにつ れて実画像に近い画像を復元していくため、より実画像に 存在する物体の形状に沿ったアテンションマップが推定さ れると考えられる.また、定量的にもt = 1の時の mIoU は高くなることがわかる.これらの結果より、StableSeg では、元画像を VAE で潜在空間に圧縮した後ノイズを混 ぜずにt = 1 で U-net に通すことで、より実画像に適した アテンションマップを得ることを可能にし、1 ステップの みでの高品質なセグメンテーションマップの推定を可能に している.なお、複数の tの統合に関しては大規模な実験 は行っておらず今後の課題である.

図 5 様々なクラスにおける推論結果例

表 5 StableSeg++の正量評価 (mloU							
			PAS-20	PC-59			
MaskCLIP [2]		init	44.7	37.9			
		+	53.4	40.5			
		init	51.4	33.9			
StableSe	eg ours	+	55.6	34.6			
		++	59.1	36.6			

5.5 多様なクラスにおける定性分析

図 5 では、ユーザーが指定したクラスを StableSeg によっ てセグメンテーションした結果である. Stable Diffusion では、50 億画像テキストペアの関係性を学習しているた め、あらゆる単語に対して対象としているアテンション マップが生成される. 固有名詞の Mario, Batman, Oculus などや、red car などの形容詞を付与した場合にも条件に 従った領域が分割されることが判明した.

5.6 StableSeg++の定量評価

この実験では StableSeg++と比較する手法として MaskCLIP+ [2] のを使用する. このとき MaskCLIP+は Annotation-Free 設定にし, MaskCLIP は画像中のクラス を指定して疑似マスクを作成し, DenseCRF [11] で処理 したものを学習データとして DeepLabV3+をバックボー ンとした MaskCLIP+を学習したものとする. 表 5 に示す 実験結果より, StableSeg の結果よりも, +, ++と順次, 精度向上が得られることが示され, 2 度の DeepLabV3+ を使った疑似マスク生成は効果的であったと考えられる. MaskCLIP+との比較では, PAS-20 に関しては提案手法が 良い結果, PC-59 に関しては上回ることはできなかった. これは,表 3 に示す (cross, self)=(64,64) で実験を行った ため, PC-59 の初期結果 (init) が MaskCLIP に対して大き く劣っていたことが理由として考えられる.

6. おわりに

StableSeg では,Stable Diffusion に使われる Attention Map と大規模データで学習した事前学習済みの知識を有効 活用した手法を提案した.実験では,様々なデータセット による評価を行い,あらゆるテキストをセグメンテーショ ンできる可能性を見出した.食事データなどの固有ドメイ ンにも汎用的な性質があることが判明し,様々なドメイン に強い頑健性があると考えられる.また,追加の学習デー タを必要としないことでコスト削減も実現した.さらに StableSeg のアテンションマップの重みを擬似マスクで学 習させたもので学習データを作り,StableSeg+を再学習さ せるモデルである StableSeg++を提案し,追加学習データ を使用しない手法を実現するとともにセグメンテーション 品質の向上させた.

参考文献

- A. Radford, J. Kim, C. Hallacy, Ramesh, G. A. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and Sutskever I. Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.
- [2] C. Zhou, C C. Loy, and B. Dai. Extract free dense labels from clip. In Proc. of European Conference on Computer Vision (ECCV), 2022.
- [3] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. In *Proc. of IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2018.
- [4] T. Lüddecke and A S. Ecker. Image segmentation using text and image prompts. In *Proc. of IEEE Conference* on Computer Vision and Pattern Recognition (CVPR), pp. 7086–7096, June 2022.
- [5] J. Ho, A. Jain, and P. Abbeel. In Advances in Neural Information Processing Systems (NeurIPS).
- [6] D. Lorenz P. Esser R. Rombach, A.Blattmann and B. Ommer. High-resolution image synthesis with latent diffusion models. In *Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.
- [7] P. Kingma and M. Welling. Auto-encoding variational bayes. In Proc. of International Conference on Machine Learning (ICML), 2014.
- [8] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman, P. Schramowski, S. Kundurthy, K. Crowson, L. Schmidt, R. Kaczmarczyk, and J. Jitsev. Laion-5b: An open large-scale dataset for training next generation image-text models. arXiv preprint arXiv:2210.08402, 2022.
- [9] A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch, and D. Cohen-Or. Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626, 2022.
- [10] R. Burgert, K. Ranasinghe, X. Li, and M. S. Ryoo. Peekaboo: Text to image diffusion models are zero-shot segmentors. In *Proc. of arXiv:2211.13224*, 2022.
- [11] P Krähenbühl and V Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, *Proc. of Advances in Neural Information Processing Systems*, Vol. 24. Curran Associates, Inc., 2011.
- [12] L Chen, Y Zhu, G Papandreou, F Schroff, and H Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In *ECCV*, 2018.
- [13] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. *International Journal of Computer Vision*, Vol. 111, No. 1, pp. 98– 136, January 2015.
- [14] R. Mottaghi, X. Chen, X. Liu, N. Cho, S. Lee, S. Fidler, R. Urtasun, and A. Yuille. The role of context for object detection and semantic segmentation in the wild. In *Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2014.
- [15] W. Xiongwei, F. Xin, L. Ying, L. Ee-Peng, H. Steven, and S. Qianru. A large-scale benchmark for food image segmentation. arXiv preprint arXiv:2105.05409, 2021.
- [16] B. Zhou, H. Zhao, X. Puig, S. Fidler, and A. Barriuso.

Scene parsing through ade20k dataset. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[17] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In *Proc. of IEEE Conference on Computer Vi*sion and Pattern Recognition (CVPR), 2016.