Stable Diffusion によるゼロショット画像領域分割

本部 勇真† 柳井 啓司†

E-mail: *†honbu-y@mm.inf.uec.ac.jp*, *††yanai@cs.uec.ac.jp*

あらまし 近年研究されているセマンティックセグメンテーションでは,複数物体の領域分割によって自動運転など 様々なものに活用することができると考えられている.しかし,学習の際にピクセルレベルのアノテーションを含む 大量の画像が必要になり,コストがかかる問題がある.そこで本研究では,大量の画像テキストペアデータを学習し た stable diffusion を活用することで,追加の学習を必要とせずに,あらゆるクラスのセグメンテーションマスクを推 論するネットワークを提案する.

キーワード Zero-shot Segmentation, Diffusion Model, Vision-Language Model

1. はじめに

近年,深層学習の発展によりセマンティックセグメンテー ションの分野は大幅に性能が向上し,ここ数年では,大規模事 前学習モデルを再利用して学習コストを削減するタスクや,あ らゆるクラスに対応させるタスクが注目されている.ピクセル レベルのアノテーションデータを使用せずにテキストのみでセ グメンテーションモデルを学習させるタスクである弱教師あり 学習法であったり,分布外データに関する学習データを使用す ることなく,未知データに対するセグメンテーションを実現す るゼロショット学習などの学習法があるが,これらの手法では 大規模事前学習モデルがセグメンテーションに特化していない ためアノテーションデータを用いた学習を必要とする問題があ り,依然として学習コストやアノテーションデータを作成する コストの削減はできていない.

そこで本研究では、50 億もの画像テキストペアを学習した、 大規模な視覚言語拡散モデルである Stable Diffusion を使用する ことで追加学習することなくセグメンテーションを可能にする 手法を提案し、コスト削減の実現とその有用性を示す.

本論文の主な貢献は次の通りである.

- 追加学習を不要にすることで学習コスト及び、アノテーションデータ作成コストの削減。
- 大規模事前学習済みモデルを使用することによって、あら ゆるクラスに対応したセグメンテーションモデルの実現

2. 関連研究

2.1 Zero-shot Segmentation

Zero-shot Segmentation では、テキストデータのみで分布外 データに対する領域分割を目的としている.このタスクでは、 学習時と検証時のカテゴリには共通部分が存在しないため、検 証時の入力には未知のカテゴリのクエリ画像に対して、テキス トが条件として与えられることで未知のカテゴリを領域分割す る.このネットワークでは、事前に同じドメインの大規模データ で事前学習したバックボーンの特徴とテキストの関係性を学習 させることで,教師データで領域分割を可能とする手法である.

近年,大規模な画像テキストペアデータの類似度をニューラ ルネットワークに学習させた大規模視覚言語モデルが注目さ れ,このモデルを使い様々なタスクを Zero-shot で解くという 傾向が深層学習ではトレンドになっている.その中の1つであ る CLIP[1]は,最初に学習済みモデルが公開されたモデルであ り,様々なタスクで使用されている.Zero-shot Segmentation に も使用されており,Zhouら[2]の MaskCLIP という手法では, 学習済みの CLIP を使用し,backbone で画像から特徴を抽出し, この特徴マップに対して,ターゲットテキスト特徴を重みにし た畳み込み演算によって,Zero-shot でピクセル単位の分類を実 現した手法である.本手法と同じくテキストのみからあらゆる クラスに対してセグメンテーションが可能になっている手法で ある.さらに MaskCLIP では,MaskCLIP で生成したマスクを 疑似マスクとして DeepLabV3+[3]を学習させることで高性能 な Zero-shot Segmentation を実現した.

2.2 拡散モデル

近年,拡散モデル (DM) が画像生成タスクで大きな成果を収 めている. Ho ら [4] によって提案されたノイズ除去拡散確率モ デル (DDPM) では,図1のように入力画像に連続的にガウシア ンノイズノイズを与え,画像から各ステップのノイズをニュー ラルネットワークで推定することで元画像を復元させることを を何回も繰り返し徐々にノイズを除去していくことによって画 像を生成する手法であり,拡散モデルを急速に発展させたモデ ルである.

特に近年, Stable Diffusion はテキスト入力に沿った高品質な 画像を生成することができるモデルであるとして注目されてい る. Stable Diffusion は拡散モデルの一種である Latent Diffusion Model (LDM) [5] というモデルが使用されており, LDM では 入力画像を Variational Autoencoder (VAE) [6] で潜在空間に圧縮 したものに対してガウシアンノイズを付与し,様々な条件を 加えることのできる U-Net アーキテクチャを使ってノイズを 除去し,デコーダーを使い画像へと復元させるモデルである. 特に Latent Diffusion Model の LDM の条件付けに CLIP [1] と 呼ばれる大規模視覚言語モデルのテキストエンコーダーを使 用してテキストで潜在空間に対して条件付けを行い,さらに LAION-5B [7] と呼ばれる 50 億枚の画像テキストペアデータ セットで学習させたものを Stable Diffusion と呼ぶ.

現在では Stable Diffusion や Imagen [8] のような拡散モデル ベースのテキストから画像を生成するモデルを起点に,テキス トのみでの画像編集 [9]~[12],テキストからの動画生成 [13]~ [15],物体検出 [16],セグメンテーション [17] など様々なタスク に拡散モデルが使用されてきている.

Hertz ら [11] の提案した Prompt-to-prompt と呼ばれる手法で は、拡散モデルベースの画像生成モデルで使用されているアテ ンション層のクロスアテンションマップを利用して、図2のよ うな生成される画像の空間レイアウトや形状を制御する手法を 提案している.これによって、プロンプトのテキストのみを編 集することで様々な画像編集を可能としている. プロンプト内 の単語の入れ替えを生成画像に反映する場合には、元画像のア テンションマップを注入し、ターゲットのアテンションマップ をオーバーライドすることによって実現した.また、単語を追 加する場合には、プロンプトの変更されない部分に対応するア テンションマップのみを注入することによって実現している. さらに、ある単語の意味を増幅/減衰させるために、対応するア テンションマップの重みを変更させる手法も提案している.本 手法ではこの手法に触発され、精度高いアテンションマップの 情報をセグメンテーションタスクに転用することができるので はないかと考えた.

図 2: Hertz らの提案したネットワーク図 ([11] から引用)

Burgert らの Peekaboo [17] では, Stable Diffusion を使った Zero-shot セグメンテーション手法を提案している.まず,学習 可能なアルファマスクをセグメンテーション画像とみなし,こ のマスクをニューラルネットワークによってモデル化された陰 関数として表現する.そして,アルファ合成された画像とセグ メンテーションされる画像領域に関連するテキストプロンプト に対して, dream loss と呼ばれるマッチングロスを使い,反復 的に最適化する.最適化の結果,アルファマスクは最適なセグ メンテーションマスクに収束する.このモデルでは,拡散モデ ルの再学習は一切行われず,陰関数表現を実現するニューラル ネットワークのみを学習する.しかし,この手法では画像毎に 最適化処理がされるため1枚当たり約2分ほど時間がかかって しまう問題が発生する.本手法で提案するモデルでは拡散モデ ルの1ステップのみ,かつ別のネットワークの最適化を行わな いために,高速かつコスト削減を実現している.

3. 手 法

本手法では、Stable Diffusion の U-Net に使用されている Transformer に注目し、条件ベクトルが与えられる Cross Attention を 使ってセグメンテーションを実現する. Stable Diffusion の Transformer Block は U-Net に複数存在し、各 Transformer で入力特徴 同士の Self-Attention と条件ベクトル ϕ (*C*) との Cross-Attention が組み込まれている. Cross-Attention では時間 T のノイズベク トル *z*_T を U-Net(ϕ) で抽出した入力特徴 ϕ (*z*_T) に対して 線形変換層 *l*_Q を使って Query とし、テキスト C の埋め込み *f*(*C*) を 2 つの線形変換層 *l*_V, *l*_K を使用して Key, Value とす る. そして Key と Query の内積を取りスケーリング \sqrt{d} した後 に Softmax を計算したものが Attention Map として Value と積 を取り次の層への特徴として利用されていく仕組みになってい る. この計算は以下の式 1, 式 2 や、図 2 の上段のように表され る. そしてこの Attention Map は与えられたテキストのトーク ン毎に得ることができる.

$$Q = l_Q(\phi(z_T)), K = l_K(f(C)), V = l_V(f(C))$$
(1)

$$AttentionMap = Softmax(\frac{QK^{T}}{\sqrt{d}})$$
(2)

提案する手法では Stable Diffusion で使用されるすべての Transformer Block から Attention Map を抽出し Cross-Attention の確 率マップ (CAPM) として使用する.

さらに、Self-Attention 層に使用される Query と Key と Cross-Attention で生成されるクラスマスク (CA Map) を使ってセグメ ンテーションマスクを洗練する Self-Attention Refinement (SAR) を提案する.まず最初に、図 3 の赤色の矢印で表される通り、 CAPM を argmax によってクラスマスク (CA Map) にする.次 に図 3 の緑色の矢印に注目する.この部分では、すべての Self-Attention 層で利用される Key を特徴マップに変換し、各クラ スマスクの領域でクラスごとの平均ベクトルを計算し、画像 内のそのクラスを表現する代表ベクトル (Class vector) を生成 する.それを新たな Key として式 2 と同様に Self-Attention の Query 特徴を使用して、クラスごとに Attention Map を計算し Self-Attention のクラスマスク (SA Map)の元となる確率マップ (SAPM) を計算する.そして最後に CAPM と SAPM を合計し クラスマスクにすることで最終的なセグメンテーションマスク が完成する.このモデルを StableSeg とする.

また、ノイズ除去のステップは time embedding=1の1ステッ プのみのアテンションマップを使用することで、1枚当たり約 2秒以下でセグメンテーションすることができる. StableSeg の アーキテクチャは図3の通りである.

図 3: StableSeg のアーキテクチャ

また, Stable Diffusion では, プロンプトがトークンに分けら れてトークンごとの別々のアテンションマップが生成されるた め bedclothes などが bed と clothes に分けられてしまう問題が ある. そのため StableSeg では, Prompt-engineering (p-eng) を 使用している.まず, トークンごとにテキストエンコーダで特 徴にし, 合計することで1つの特徴としてクラスアテンション マップを生成した.さらに, セグメンテーションの対象は現実 世界の画像であることから a photo of [prompt] とすることでよ り良いテキスト特徴を生成した.

4. データセット

提案手法ではあらゆるテキストに対してセグメンテーショ ンマスクを生成することができるため、様々なデータセッ トで実験する.一般物体 20 クラスで構成されている Pascal VOC (PAS-20) [18],一般物体 60 クラスで構成されている Pascal Context (PC-59) [19], 100 クラスの食事クラスで構成されてい る UECFoodPix (FoodPix), 103 種類の食材で構成されている FoodSeg103 (FoodSeg) [20],物体,物体パーツ,もの (stuff)の3 区分の、計 150 種類のクラスが画素単位でアノテーションされ ている ADE20K (A-150) [21],50 都市の街路景観で撮影された 18 クラスの Cityscapes (City) [22], COCO2017 データセットに 存在する 91 クラス 164K 枚の画像に対してアノテーションを 施したデータセット COCO Stuff (Stuff) [23] で実験を行った.

5. 実 験

StableSeg は 50 億テキスト画像ペアで学習済みの Stable Diffusion を使い,時間埋め込みは t = 1 を使用することで,Stable Diffusion における最後のノイズ除去過程を再現するようにし た.t = 1 のみのノイズ除去過程で抽出される Attention を使用 するため,画像一枚の処理時間は 2 秒以内で済んでいる.入 力画像にはノイズは混ぜずに VAE で潜在空間に圧縮し U-net に入力することで元画像に近いアテンションマップを習得し た.また,StableSeg では U-net の各層から 8,16,32,64 スケー ルの self/cross アテンションマップが抽出される.SAPM は正 確な CA Map を必要とするため,よりもクラス特定の場所が 抽出される必要がある.そのため実験では指定がない限り, Cross-Attention にはスケールが 16 以下のすべてのアテンショ ンマップを平均したものを使用し,Self-Attention には,スケー ルが 64 以下になる Query, Key 特徴すべてを使用した.評価

表 1: 各データセットでの定量評価

	PAS-20	PC-59	A-150	Stuff	City	FoodPix	FoodSeg
StableSeg	49.9	37.6	23.3	28.6	14.7	64.6	48.1
MaksCLIP	47.6	38.1	26.0	29.6	21.6	33.2	37.0

表 2: SAR	の違いによ	る各データセ	ットでの定量評価
----------	-------	--------	----------

	PAS-20	PC-59	A-150	Stuff	City	FoodPix	FoodSeg
w/ SAR	49.9	37.6	23.3	28.6	14.7	63.5	48.1
w/o SAR	47.2	31.0	19.4	25.4	12.7	53.8	39.3

表 3: pronpt engineering(p-eng)の違いによる定量評価 (mIoU)

	PAS-20
w/ p-eng	49.9
w/o p-eng	45.6

表 4: self/cross attention map において異なるスケール使用時の 定量評価 (mIoU)

		PAS-20			PC-59	
self cross	16	32	64	16	32	64
16	48.8	49.7	49.9	34.5	35.6	36.0
32	49.7	50.7	50.8	34.3	34.9	35.2
64	50.1	51.0	51.4	33.0	33.5	33.4
		FoodPix			FoodSeg	
16	62.9	63.4	63.5	45.9	47.4	48.1
32	63.5	64.1	64.2	45.4	46.9	47.7
64	64.2	64.6	64.5	44.7	46.0	46.5
		A-150			City	
16	22.9	23.2	23.2	14.8	14.8	14.7
32	22.3	22.6	22.6	13.1	13.2	13.0
64	21.6	21.8	21.7	13.1	13.0	12.9

するモデルには MaskCLIP を使用し, それぞれのモデルへの 入力には入力画像とその画像内に含まれるプロンプトを入力 とした. MaskCLIP と各データセットで比較した結果は表 1, Self-Attention Refinement (SAR), Prompt-engineering (p-eng) のア ブレーションスタディは表 4 は U-net の異なる層の 16,32,64 ス ケールから cross/self attention 層でどの特徴を使うのかを実験 した結果である.

5.1 複数データセットにおける従来手法との比較

表1の定量評価の結果より, MaskCLIP[2]では, 主に一般 物体で構成されている PAS-20, PC-59, A-150, Stuff データセッ トで StableSeg と近い評価値が得られるのに対して, StableSeg では, MaskCLIP と比較して食事データセットで精度が高くな ることが判明した. これは CLIP よりも Stable Diffusion が食事 データなどの固有ドメインに対してもより豊富な表現力を持っ ていると考えられる.

5.2 Self-Attention Refinement の効果検証

表2の結果より, Self-Attention を使ったセグメンテーション マスクの洗練は CAPM のみで作成したクラスマスクよりも改

図 4: 一般物体データを使った従来手法との比較例

善することが分かった.要因としては,Self-Attention はピクセ ル同士の類似度を取るのに特化するように学習しているため, 対象領域のベクトルを使うことで,より良い確率マップが得ら れたと考えられる.

5.3 アテンションマップのスケールの違いによる性能評価

表 4 では Cross/Self Attention Map のスケールの違いによる 実験結果の表である.スケールにはマップサイズとして 8, 16, 32, 64 が存在するが意味的な領域を最も捉えることのできる 8 のスケールは必ず使用している.そのため,表には存在しな い.また, (cross,self) = (64,32) であった場合は, Cross Attention Map で使用するスケールが 64 以下のすべてのマップの合計か つ, Self Attention Map で使用するスケールが 32 以下のすべて のマップの合計という意味になる.

結果より、データセットごとに cross/self の最適なスケール が異なり, FoodPix では (cross,self) = (64,32) が最大値, PAS-20 では (64,64), PC-59, A-150 と foodseg では (16,64), City では (16,16) であることが分かった. 提案手法では cross attention の マップをもとに Self-Attention マップを作るため, cross のスケー ル値に self が左右されていると考えられる. ここで cross の値 に注目すると、A-150, City, PC-59, FoodSeg が 16 であることが 分かる. cross のスケールが小さいほどより意味的な部分が抽 出される一方で輪郭などの詳細な部分が抽出されないといった 特徴がある.図6のように、A-150, City, PC-59, FoodSegの3 つのデータセットでは1枚当たりの画像にクラスが複数含まれ ることが多く、個々の意味的な領域の判断が重要視されるから であると考えられる.一方で PAS-20, FoodPix では1枚当たり のクラス数が少ないため, cross で弱い意味的な部分を抽出して も精度が下がることがなく、かつ詳細な部分を抽出して精度を 向上させることができていると考えられる. この考察より, 画 像1枚当たりのクラス数が多い画像では cross のスケールを小 さい値に設定し、少ない場合は cross のスケールの値を小さく するのが最適であると考えられる.

また,画像1枚当たりのクラス数が大きいデータセット程 に精度が下がる傾向があるが,1枚当たりのクラス数が近いの FoodPix, PAS-20を比較すると食事データセットである FoodPix のほうが大きく精度が高くなることが分かった.また,PAS-20 のクラス数の約2倍もある FoodSeg と比較すると競争力のある 精度になっていることから, StableSeg では特定のドメインに強

図 5: 食事データを使った従来手法との比較例

い頑健性があると考えられる.

5.4 MaskCLIP との比較

図 4 は従来手法の MaskCLIP [2] と比較した例になる. MaskCLIP では、物体の位置は捉えられているもののノイズ が多く誤った部分が多いように見ることができる.一方で StableSeg では、MaskCLIP と比較するとノイズが少なく物体を 捉えることができていることが分かる.しかし詳細な部分は MaskCLIP のほうが捉えることができているため、一般物体デー タにおいて各手法は、一長一短であると考えられる. 図5の食事 データセットにおいては、MaskCLIPと比較すると StableSeg の ほうが高品質なマスクを生成していることが分かる. MaskCLIP では、一般物体データとは異なり、捉えることができないクラ スが出現している. 一方で StableSeg では様々なクラスに対し て適切に対象領域を捉えることができており、さらに料理内の 複数クラスに対しても正しい場所を推定していることが分かっ た. これは Stable Diffuison において CLIP [1] と比較すると、学 習データの多様性が高いことから StableSeg は食事ドメインに も強い汎化性能を示していると考えられる.

5.5 self/cross/self+crossのアテンションマップの比較

図7のように、StableSeg では CAPM で作成したマスク (Cross) と SAPM で作成したマスク (Self) とそれらを足し合わせたセグ メンテーションマスク (Cross+Self) が作成される. この3つの 結果例を示している. 結果より、Cross では対象領域が抽出でき ているが詳細な部分が抽出できていないことが多く、対象領域 からはみ出していることや、誤った領域として認識しているこ とが多い場合があることが分かる. Self では、一方で Cross の

図 7: cross/self/cross+self のアテンションマップで作った領域分 割の良い例

領域特徴と似ている部分を抽出するため人の形や,動物の形が Cross と比較して輪郭に沿って抽出されている.しかし, Cross で誤った領域が含まれるため,対象領域とその外側のノイズの 部分が抽出される問題がある.Cross+Self では, Cross の特徴 である対象領域の高い部分の抽出と,Self の特徴である対象領 域の輪郭を抽出する部分の抽出を足し合わせることで,より対 象領域に近い領域を抽出することができると考えられる.

一方で,うまくいかない例としては図 8 のような例がある. Cross で正しい対象領域が抽出できない場合や,対象領域が小 さすぎる場合には,Cross でノイズ部分の割合を大きく抽出し てしまう問題があるため,正しい領域が領域分割できなくなっ てしまい,さらにノイズ部分の特徴が際立ってしまうため Self で大きく間違った領域が抽出されてしまうと考えられる.

5.6 異なる時間埋め込みによる性能検証

StableSeg の時間埋め込み(t)を変化させると図 9,表5のような結果となった.実際のStable Diffusion ではtが大きいほど ガウスノイズに近づいた画像を復元する際に使用するため,生 成する物体の位置を大まかに決めるアテンションマップが得ら れると考えられ,tが小さくなるにつれて実画像に近い画像を 復元していくため,より実画像に存在する物体の形状に沿った アテンションマップが推定されると考えられる.また,定量的 にも t=1 の時の mIoU は高くなることがわかる.これらの結果 より,StableSeg では,元画像を VAE で潜在空間に圧縮した後 ノイズを混ぜずに t=1 の埋め込みと U-net に通すことで,より 実画像に適したアテンションマップを得ることを可能にし,1 ステップのみで高品質なセグメンテーションマップの推定を可 能にしている.

表 5:	時間埋め込み	(t)	の違いに。	よる	る定量評価
------	--------	-----	-------	----	-------

	1	250	500	750	1000
mIoU	49.9	46.4	42.9	38.8	31.3

5.7 Cross Attention のスケールの違いによる定性分析

図 10 では、U-net 内の異なるスケールで作られる Cross Atten-

図 8: cross/self/cross+self のアテンションマップで作った領域分 割の悪い例

図 9: 時間埋め込みを変化させたときの領域分割例

GT	Down 64	Down 32	Down 16	Middle 8	Up 16	Up 32	Up 64
ST	Z.						8.
ANT .	AN CON	ART.	A.		A.	(TO)	A.C.
	(Alas)			R			[28]*
A811		Agent		A	AL.	4.6.1	
*	8	-	×	S	- 100		5

図 10: スケールの異なる Cross Attention Map を使用した領域分 割例 (Down,Middle,Up は Unet の位置を示し, 64, 32, 16, 8 はア テンションマップの一辺のサイズを示している)

tion でどのようなセグメンテーションマスクが生成されているの かを実験した結果を示したものである. 64, 32, 16, 8 のすべての スケールで抽出されるアテンションマップを Down, Middle, Up 毎に平均を取り可視化した. Down64, Down32, Up64, Up32 のよ うなスケールが大きい場合はより詳細な部分が抽出され, 誤っ た部分も多いが対象領域の輪郭に沿った綺麗なセグメンテー ションマスクが生成されていることが分かる. 一方で Middle8 のようにスケールが小さい場合は,アテンションマップを作成 する Key, Query の特徴チャネル数が多く,表現力があるため 対象領域の意味的な部分が抽出されると考えられる.これによ り誤った部分が抽出されていることが減少するが,対象領域の 形状を無視した領域を抽出してしまうことが分かった.

5.8 多様なクラスにおける定性分析

図 11: 様々なクラスにおける推論結果例

図11では、ユーザーが指定したクラスを StableSeg によって セグメンテーションした結果である. Stable Diffusion では、50 億画像テキストペアの関係性を学習しているため、あらゆる単 語に対して対象としているアテンションマップが生成される. 固有名詞の Mickey Mouse や Mario, Batman, Oculus, Saturn V な どにも適切な領域が分割されていることが分かる. また、red car などの形容詞を付与した場合にも条件に従った領域が分割 されることが判明した. これにより結果のような特殊なクラス であっても StableSeg によってセグメンテーションが可能にな ると考えられる.

6. おわりに

StableSeg では,Stable Diffusion に使われる Attention Map と 大規模データで学習した事前学習済みの知識を有効活用した手 法を提案した.実験では,様々なデータセットによる評価を行 い,あらゆるテキストをセグメンテーションできる可能性を 見出した.食事データにも汎用的な性質があることが判明し, 様々なドメインに強い頑健性があると考えられる.また,追加 の学習データを必要としないことでコスト削減も実現した.今 後の課題としては,Stable Diffuison を使ったさらなる Zero-shot Segmentation の改良及び,その活用法をさらなる分析とともに 取り組む必要がある.

文 献

- A. Radford, J. Kim, C. Hallacy, Ramesh, G. A. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and Sutskever I. Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.
- [2] C. Zhou, C C. Loy, and B. Dai. Extract free dense labels from clip. In Proc. of European Conference on Computer Vision (ECCV), 2022.
- [3] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. In *Proc. of IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2018.
- [4] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In *Proc. of Advances in Neural Information Processing Systems* (*NeurIPS*), 2020.

- [5] D. Lorenz P. Esser R. Rombach, A.Blattmann and B. Ommer. Highresolution image synthesis with latent diffusion models. In *Proc.of the IEEE Conference on Computer Vision and Pattern Recognition* (CVPR), pp. 10684–10695, June 2022.
- [6] P. Kingma and M. Welling. Auto-encoding variational bayes. In Proc.of International Conference on Machine Learning (ICML), 2014.
- [7] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman, P. Schramowski, S. Kundurthy, K. Crowson, L. Schmidt, R. Kaczmarczyk, and J. Jitsev. Laion-5b: An open large-scale dataset for training next generation image-text models. *arXiv preprint arXiv:2210.08402*, 2022.
- [8] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. Kamyar, B. Karagol, S. Sara, R. Gontijo, T. Salimans, J. Ho, D. J, and M. Norouzi. Photorealistic text-to-image diffusion models with deep language understanding. *arXiv preprint arXiv:2205.11487*, 2022.
- [9] O. Avrahami, D. Lischinski, and O. Fried. Blended diffusion for text-driven editing of natural images. In *Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 18208–18218, June 2022.
- [10] G. Kim, T. Kwon, and J. Chul. Diffusionclip: Text-guided diffusion models for robust image manipulation. In *Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2426–2435, June 2022.
- [11] A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch, and D. Cohen-Or. Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626, 2022.
- [12] T. Brooks, A. Holynski, and A. A. Efros. Instructpix2pix: Learning to follow image editing instructions. In *Proc. of arXiv*, 2022.
- [13] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P., B. Poole, M. Norouzi, D. J., and T. Salimans. Imagen video: High definition video generation with diffusion models. *arXiv preprint arXiv:2210.02303*, 2022.
- [14] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Imagen video: High definition video generation with diffusion models. *arXiv preprint arXiv:2204.03458*, 2022.
- [15] D. Zhou, W. Wang, H. Yan, W. Lv, Y. Zhu, and J. Feng. Magicvideo: Efficient video generation with latent diffusion model. *arXiv preprint arXiv:2211.11018*.
- [16] S. Chen, P. Sun, Y. Song, and P. Luo. Diffusiondet: Diffusion model for object detection. In *Proc. of arXiv:2211.09788*, 2022.
- [17] R. Burgert, K. Ranasinghe, X. Li, and M. S. Ryoo. Peekaboo: Text to image diffusion models are zero-shot segmentors. In *Proc. of* arXiv:2211.13224, 2022.
- [18] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. *International Journal of Computer Vision*, Vol. 111, No. 1, pp. 98–136, 2015.
- [19] R. Mottaghi, X. Chen, X. Liu, N. Cho, S. Lee, S. Fidler, R. Urtasun, and A. Yuille. The role of context for object detection and semantic segmentation in the wild. In *Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2014.
- [20] W. Xiongwei, F. Xin, L. Ying, L. Ee-Peng, H. Steven, and S. Qianru. A large-scale benchmark for food image segmentation. *arXiv preprint* arXiv:2105.05409, 2021.
- [21] B. Zhou, H. Zhao, X. Puig, S. Fidler, and A. Barriuso. Scene parsing through ade20k dataset. In *Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.
- [22] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In *Proc. of IEEE Conference* on Computer Vision and Pattern Recognition (CVPR), 2016.
- [23] H. Caesar, J. Uijlings, and V. Ferrari. COCO-Stuff: Thing and stuff classes in context. In *Proc. of IEEE Conference on Computer Vision* and Pattern Recognition (CVPR), 2018.