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ABSTRACT
The management of dietary calorie content using information tech-
nology has become an essential topic in the multimedia field of
research in recent years. Therefore, many researchers and compa-
nies are conducting research and developing applications. Many
methods for estimating the calorie content of a food use image
recognition. However, these methods have a problem. They cannot
consider the 3D heights and depths of the food because they only
consider the food as a 2D object, even though the actual meal is 3D.
To solve this problem, we would like to utilize 3D reconstruction
techniques based on deep learning, developed in recent years, but
most of these methods reconstruct the normalized objects. Being
normalized means that the actual size is unknown, making it dif-
ficult to use them for estimating calories and nutritional value. In
this paper, we propose a method using an implicit function repre-
sentation that reconstructs the 3D shapes of a dish and plate as they
are in real scale, using an RGB-D image and camera parameters.
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1 INTRODUCTION
In recent years, the management of dietary calorie content using
information technology has been an essential topic. As a result, var-
ious methods and applications for estimating calorie content have
been researched and developed. Most of the existing methods for
estimating the calorie content of foods use image recognition [4, 5].
Therefore, many methods only recognize food in 2D, even though
actual food is 3D objects. Although there are methods that recog-
nize food in three dimensions [1, 11], they cannot recognize a bowl
of rice because of the restriction that the food must be on a flat plate.
To solve this problem, previously, we proposed a method called
“Hungry Networks” [12] which reconstructs a dish (food + plate)
and plate in 3D from a single RGB image using an implicit function
representation and achieves highly accurate reconstruction and
volume estimation.

However, Hungry Networks has one problem. That is, the recon-
structed 3D shapes are normalized. Since the actual volume cannot
be determined from the normalized 3D shape alone, measuring the
actual size separately from the reconstruction was necessary. To
solve this problem, we propose a method using an implicit function
representation that reconstructs the actual 3D shape without nor-
malization by utilizing an RGB-D image and a perspective projec-
tionmodel, which is a classical cameramodel. The proposedmethod
is called as “Real Scale Hungry Networks.” The experimental results
show that the proposed method can accurately reconstruct the 3D
shape in real scale and can be used for actual volume estimation.

2 RELATEDWORK
2.1 3D shape reconstruction from a single image
When performing 3D reconstruction using deep learning, it is im-
portant to decide what kind of representation is used for reconstruc-
tion. The representation can be mainly classified into voxel, point
cloud, mesh, and volume. The voxel and point cloud representations
methods [3, 6, 18] have problems such as high computational cost,
inability to achieve high resolution, and complex post-processing.
The mesh representations methods [13, 19] use a mesh template
or dynamically generate a mesh template and optimize the mesh
shape. Compared to voxel-based methods, mesh representation has
many advantages, such as high resolution and memory efficiency.
Also, unlike point clouds, they can represent shape because it has
connection information between points. However, mesh template-
based methods have not achieved good results because they deform
the template mesh to obtain the target 3D shape and thus have prob-
lems such as low expressive power and self-intersections. In recent
years, volume representation using implicit functions has been at-
tracting attention. The volume representation method with implicit
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functions [10, 12, 15] learns a function representing a 3D shape as a
scalar field. Finally, the 3D shape is extracted as a mesh by applying
a Marching Cube to the inferred scalar field. This implicit function
representation is revolutionary because it is far more expressive
than previous methods, achieves highly accurate reconstruction,
and is superior in memory efficiency and network size.

2.2 3D reconstruction using depth images
There are two types of 3D reconstruction methods using depth im-
ages: those that use only depth images [16] and those that use both
RGB and depth images [8]. In these methods using depth images,
the depth images are converted to a volumetric grid representation
with or without RGB images and are used as inputs to the network.
The conversion to a volumetric grid representation is compatible
with 3D Convolution and voxel representation, but 3D Convolution
is computationally expensive. Moreover, voxel representation has
a problem of low expressive power and resolution compared to im-
plicit function representation. Therefore, in this paper, we propose
a reconstruction method using implicit function representation that
integrates feature tensors of depth images and RGB images without
converting them to volumetric grid representation.

2.3 Food recognition considering 3D shape
Chen et al. [2] use depth sensors to capture depth images and es-
timate the amount of calories in a meal. There are also methods
to recover 3D shapes by estimating camera matrices from multi-
ple viewpoints, such as the method by Puri et al. [14] and Diet-
Cam [7]. In recent years, research using CNNs has been developed.
Lu et al. [9] generated depth images using deep learning and at-
tempted to infer the food volume from the generated depth images.
Im2calories [11] estimates 3D shapes from RGB images in the form
of voxel representation and utilizes them for calorie estimation.
Recently, a dataset of 5000 RGB-D images annotated with the nu-
tritional value, named Nutrition5k [17] has been published.

3 METHOD
The proposed method named “Real Scale Hungry Networks” re-
constructs two non-normalized, real-scale 3D shapes of a dish and
a plate using an RGB-D image and camera parameters as input.
The unique feature of this method is that the occupancy field is
inferred not in the normalized space but the space corresponding
to the real scale. This feature solves the problem of our previous
work, “Hungry Networks” [12]; that is, the reconstructed 3D shape
is normalized so that the real scale must be calculated by a differ-
ent method from the reconstruction. In order to achieve this, we
propose a method that abandons the setting of 3D reconstruction
in a normalized space, which is easy to learn for deep learning and
utilizes a perspective projection model, which is one of the classical
camera models, and depth images.

3.1 Camera Models and Deep Learning
In general, using a perspective projection model and a depth im-
age, it is possible to calculate the real scale of objects in an image.
However, only the depth image cannot calculate the volume of an
object because it does not provide the shape of backside. Therefore,
it is necessary to perform 3D reconstruction by deep learning to

Figure 1: left: Normalization performed by most implicit
function representation-based methods, right: Normaliza-
tion performed by PIFu [15]

obtain the complete 3D shape. Also, we would like to reconstruct
the real scale 3D shape without normalization by utilizing the per-
spective projection model and depth images. However, as shown
in the left panel of Figure 1, the 3D reconstruction method using
implicit function representation sets the origin at the center of the
object and performs normalization to keep the object’s size con-
stant. Therefore, it is difficult to integrate it with the camera model.
Hence, we focus on a method named PIFu [15], which performs 3D
reconstruction from a single RGB image using an implicit function
representation utilizing the camera model. This method uses the
weak perspective projection method for the camera model to nor-
malize the object size and the distance from the camera to the object
to be reconstructed, as shown in the right panel of Figure1. While
the normalization by using the weak perspective projection method
made it possible to learn, the essential information, such as the ac-
tual depth and the actual scale of the object, is destroyed. Thus the
reconstruction cannot be performed as it is in actual size. There is
also the problem that only certain viewpoints can be reconstructed
correctly in PIFu.

The problem to be solved in this research is not to reconstruct
normalized 3D shapes but to reconstruct 3D shapes in real scale
with high accuracy. At the same time, the system must be able to
handle images from arbitrary viewpoints as input. The application
will not be helpful if it can only handle input from specific view-
points. Therefore, the method proposed in this paper reconstructs
a real size 3D shape using a perspective projection rather than a
weak perspective projection. However, when using the perspective
projection, the depth of the space to be reconstructed cannot be
normalized as in the weak perspective projection, making learning
difficult. Hence, depth images are also used as input in the proposed
method in addition to RGB images. In this method, the depth image
is used as follows. (1) Setting the space for which the occupancy
field should be inferred, (2) Sampling the distance to the visible
surface from the camera, (3) Extraction of features related to global
shape. These methods make it possible to train the network that
realizes 3D reconstruction according to the actual scale, and the
reconstruction accuracy is also improved.

3.2 Utilization of depth images
In this section, we propose methods for highly accurate 3D recon-
struction corresponding to actual scale using depth images.
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Figure 2: A signed offset from the surface of the object can
be calculated from the difference between the depth value
obtained from the pixel values in the depth image and the
distance to the point for which the occupancy is desired. This
offset falls within a specific range with respect to the object’s
surface. Therefore, the object shape can be learned from the
offset without normalizing the depth value.

3.2.1 Decision on the space for inferring the occupancy field. In
order to obtain the actual 3D shape, the space for finding the oc-
cupancy field must first be set correctly. When reconstructing a
normalized 3D shape as before, it is sufficient to sample the coor-
dinates from the normalized space. For example, we can restrict
the space between the 𝑥,𝑦, 𝑧 axes to [-0.5, 0.5]. However, we do not
know the space to be sampled when using perspective projection.
This is because the viewing platform extending from the camera
has no restrictions on the depth direction, and it is impossible to
know where the object is. This problem can be solved by using a
depth image. Because the pixel value of the depth image indicates
how in-depth the meal is, and based on that, the space for which
the occupancy field should be obtained can be set.

3.2.2 Depth value sampling from depth image. Learning was rela-
tively easy in reconstructing normalized 3D shapes because it only
had to infer the occupancy field in constant space. Also, PIFu learned
well by using weak perspective projection, which normalizes the
depth at which objects exist within a specific range. However, when
3D shapes are handled as an actual scale without normalization,
as in this research, it is difficult to train the network because the
distance between the camera and the object is quite different. So
we utilize the depth value obtained from the depth image. We fo-
cused on the difference between the depth value taken from the
depth image pixel and the distance from the camera to the point 𝑝
for which we wanted to infer the occupancy. This difference is a
signed offset, which indicates how far the point 𝑝 ∈ R3 is from the
object’s surface visible to the camera. Since this offset is within a
specific range for the object’s surface, we thought that the network
might be able to learn the 3D reconstruction correctly based on
the offset without normalizing the depth values. This is shown in

Figure 2. Therefore, we decided to sample depth values from the
depth image and use them as input to the decoder. We call this
depth value sampling. We will show in later experiments whether
this idea contributes to the accuracy.

3.2.3 Depth features for overall shape. In depth value sampling,
information was obtained at the pixel level from the depth image.
However, this alone misses beneficial information on the surface
shape around the pixel and the entire 3D object’s shape. Therefore,
we decided to apply CNN to depth images as well as RGB images
to extract features and utilize them. We call them depth features.

3.2.4 Network. The network overview of the proposed method
is shown in Figure 3. The network consists of two encoders and
two decoders. Two encoders exist to obtain features for each RGB
image and depth image. There are also two decoders to infer the
occupancy of each dish and plate.

3.2.5 Inference. This section describes the behavior during in-
ference. First, the point 𝑝 ∈ R3 is sampled, and the coordinates
(𝑢, 𝑣) ∈ R2 of the point 𝑝 projected on the image are calculated
using the perspective projection model. Next, the encoders are used
to extract the features of the RGB image and the depth image, re-
spectively. Here, the shapes of both features are 𝐶1 ×𝐻 ×𝑊 , and
𝐶2 ×𝐻 ×𝑊 , respectively. These features need to be computed only
once at the beginning of inference. Next, we infer the occupancy
rate. For example, consider inferring the occupancy of the 3D coor-
dinate 𝑝 ∈ R3 indicated by the purple dots in Figure 2. For inference,
we use the features 𝑠, 𝑡, 𝑑 , which are bilinear interpolation sampled
from the RGB features/depth features/depth images using (𝑢, 𝑣),
and 𝑧, which is the distance from the camera to the point 𝑝 . The
shapes of the features, 𝑠, 𝑡, 𝑑, 𝑧, are𝐶1×1×1,𝐶2×1×1, 1×1×1, and
1×1×1, respectively. These four features are combined in a concate-
nate layer to create the features which shape is (𝐶1 +𝐶2 + 2) × 1× 1.
The created features are used as inputs to two decoders, each of
which performs 1D convolution to infer occupancy.

3.2.6 Train. Themini-batch loss for training the network is defined
as follows:

𝑤


𝑢

𝑣

1

 = K
[
R T

] 
𝑥

𝑦

𝑧

1

 (1)

𝒆𝑖 = encoder𝑟𝑔𝑏 (𝐼𝑖 ) (2)
𝒇𝑖 = encoder𝑑𝑒𝑝𝑡ℎ (𝐷𝑖 ) (3)

(𝑢, 𝑣)𝑖, 𝑗 = projection(𝑝𝑖, 𝑗 , 𝐾𝑖 , 𝑅𝑖 ,𝑇𝑖 ) (4)
𝒔𝑖, 𝑗 = sample(𝒆𝑖 , (𝑢, 𝑣)𝑖, 𝑗 ) (5)
𝒕𝑖, 𝑗 = sample(𝒇𝑖 , (𝑢, 𝑣)𝑖, 𝑗 ) (6)
𝒅𝑖, 𝑗 = sample(𝐷𝑖 , (𝑢, 𝑣)𝑖, 𝑗 ) (7)
𝒛𝑖, 𝑗 = distance(𝑝𝑖, 𝑗 , 𝐾𝑖 , 𝑅𝑖 ,𝑇𝑖 ) (8)
𝒄𝑖, 𝑗 = concatenate(𝒔𝑖, 𝑗 , 𝒕𝑖, 𝑗 , 𝒅𝑖, 𝑗 , 𝒛𝑖, 𝑗 ) (9)
𝑦1𝑖, 𝑗 = decoder𝑑𝑖𝑠ℎ (𝒄𝑖, 𝑗 ) (10)
𝑦2𝑖, 𝑗 = decoder𝑝𝑙𝑎𝑡𝑒 (𝒄𝑖, 𝑗 ) (11)

LO (𝑜, 𝑜) = L𝑏𝑐𝑒 (𝑜, 𝑜) (12)



MADiMa ’22, October 10, 2022, Lisboa, Portugal Shu Naritomi and Keiji Yanai

Figure 3: The network consists of two encoders and two decoders. The encoders extract features from RGB and depth images,
respectively. The decoders infer the occupancy of a dish and a plate, respectively.

LC (𝑜1, 𝑜2) = max(𝑜2 − 𝑜1, 0) (13)

LB =
1
|B|

|B |∑︁
𝑖=1

𝐾∑︁
𝑗=1

(
_1LO (𝑦1𝑖, 𝑗 , 𝑜1𝑖 (𝑝𝑖, 𝑗 ))

+ _2LO (𝑦2𝑖, 𝑗 , 𝑜2𝑖 (𝑝𝑖, 𝑗 ))

+ _3LC (𝑦1𝑖, 𝑗 , 𝑦2𝑖, 𝑗 )
)

, (14)

where K in Eq.1 is the intrinsic camera parameter matrix of the 3×3,
and R, T are the extrinsic camera parameter matrices representing
the 3×3 and 3×1 rotations and translations, respectively. The𝑢, 𝑣 on
the left side are the coordinates of the point 𝑝 = (𝑥,𝑦, 𝑧) projected
onto the image. In Eq.2,3, 𝐼𝑖 and 𝐷𝑖 are the 𝑖th RGB/depth images
of the mini-batch, encoder𝑟𝑔𝑏 , encoder𝑑𝑒𝑝𝑡ℎ are the encoders that
extract features for each RGB and Depth, and 𝒆𝑖 ,𝒇𝑖 are the extracted
features. The projection in Eq.4 is a function to get 𝑢, 𝑣 on the left
side calculated using the right side of Eq. 1, and sample in Eq.5,6,7
is a function to perform bilinear sampling using given features
𝒆𝑖 , 𝒇𝑖 and (𝑢, 𝑣)𝑖, 𝑗 from the depth image 𝐷𝑖 , and 𝒔𝑖, 𝑗 , 𝒕𝑖, 𝑗 , 𝒅𝑖, 𝑗 are
the features extracted by bilinear sampling. Note that 𝑗 means the
𝑗-th point out of 𝐾 sampled points from the neighborhood of the
𝑖-th 3D shape of batch 𝑖 . The distance in Eq.8 is the absolute value
of the z-axis of the point 𝑝𝑖, 𝑗 in the camera coordinate system.
Note that 𝒛𝑖, 𝑗 is not the distance from the origin of the camera
coordinate system to the point 𝑝𝑖, 𝑗 , but the distance from the plane
parallel to the projection plane passing through the origin of the
camera. And decoder𝑑𝑖𝑠ℎ and decoder𝑝𝑙𝑎𝑡𝑒 in Eq.10,11 are decoders
for inferring dish and plate occupancy, respectively. Let𝑦1𝑖, 𝑗 , 𝑦2𝑖, 𝑗 ∈
R be the inferred occupancy. The LO in Eq.12 is the binary cross

entropy loss for training occupancy, and the LC in Eq.14 is the
plate consistency loss [12] for maintaining consistency of the plates.
The final 𝑦1𝑖, 𝑗 , 𝑦2𝑖, 𝑗 and Eq. 14 are used for training. Note that
𝒆𝑖 ,𝒇𝑖 , 𝒔𝑖, 𝑗 , 𝒕𝑖, 𝑗 , 𝒅𝑖, 𝑗 , 𝒛𝑖, 𝑗 ,𝒚1𝑖, 𝑗 ,𝒚2𝑖, 𝑗 in Eq.2~11 correspond to Figure
3.

3.3 Dataset
The dataset used for training/evaluation of the proposed method
was generated using the watertight Mesh dataset used in Hungry
networks. This dataset contains RGB images but not RGB-D im-
ages. Therefore, to train the proposed method, we rendered RGB-D
images from the same mesh dataset as Hungry networks. Note that
the watertight mesh data used for training Hungry networks is
normalized, so we used it after restoring it to its actual size in the
present method.

3.3.1 RGB-D image rendering. In order to train the proposedmethod,
we created two datasets by rendering the dish mesh in two different
ways. The differences between the two ways are shown in Figure 4.
One is an RGB-D image rendered by sampling about 30 points from
a hemispherical shape with a radius of 20 cm centered on the dish
and pointing the camera at the meal from there. This way is close
to the condition of the image rendered by Hungry Networks. The
other is an RGB-D image rendered with the meal in the field of
view from 25 sampled points each from a hemisphere of radius 20,
30, and 40 cm centered on the meal, to which noise sampled from a
normal distribution with mean 0 and variance 2.5 cm was added.
Compared to the first RGB-D image dataset, the second RGB-D
image dataset has a different size of food in the image. Also, as
Figure 4 shows, since the images are taken from various distances,
the diversity of the depth images is higher than that of the first
one, making learning more difficult. We refer to these two image



Real Scale Hungry Networks: Real Scale 3D Reconstruction of a Dish and a Plate MADiMa ’22, October 10, 2022, Lisboa, Portugal

Figure 4: Image dataset A and B have different camera set-
tings when rendering images. Image dataset B is more dif-
ficult to learn than Image dataset A because of the more
diverse depth distribution.

datasets as Image dataset A and Image dataset B, respectively. Since
the intrinsic/extrinsic parameters of the camera are essential in this
method, the RGB-D images are captured, and the camera param-
eters are saved simultaneously. For implementation, we used the
Open3D and OSMesa library for rendering.

4 EXPERIMENTS
The proposed method takes RGB-D images and camera parameters
as input and performs a real-scale 3D reconstruction of a dish
and plate. Since this method performs bilinear sampling from the
feature tensors, we considered that the size of the feature tensors
output by the encoder is important. Therefore, we first trained the
method using various encoders and evaluated it quantitatively and
qualitatively. For this experiment, we used Image dataset A, which
is relatively easy to train.

Next, Image Dataset B was used to test how best to handle depth
images to obtain the best accuracy. In other words, the experiment
on the effects of depth value sampling and depth features. In this
experiment, we used the encoder that had good accuracy in the
first experiment.

4.1 Encoder
In this section, we experiment to see how different encoders affect
the results. Three types of encoders were used for feature extraction:
Custom UNet, ResNet50 Layer4, and ResNet50 Layer1-4. Custom
UNet is a network of our own implementation with a Unet-like
architecture. ResNet50 Layer4 uses the output of the final layer
of ResNet50. ResNet50 Layer1-4 use all the features output by the
middle layer of ResNet50. The major difference between these net-
works is the size of the output features. As shown in Table 1, the
features output by Custom UNet have large width and height, while
the output of ResNet50 Layer4 has small width and height and large
number of channels.

4.2 Metrics
We prepared four evaluation metrics. The first is IoU, the quotient
of union and intersection between the reconstructed mesh and
the ground truth mesh. The second one is Chamfer L1 distance,
which is calculated as the average distance from the point on the
reconstructed mesh to the nearest neighbor point on the ground
truth mesh and the distance from the point on the ground truth

Table 1: Output feature shape for each encoder input feature
shape.

backbone input output
Custom UNet 3 × 224 × 224 128 × 112 × 112
ResNet50 (Layer 1) 3 × 224 × 224 255 × 56 × 56
ResNet50 (Layer 2) 3 × 224 × 224 512 × 28 × 28
ResNet50 (Layer 3) 3 × 224 × 224 1024 × 14 × 14
ResNet50 (Layer 4) 3 × 224 × 224 2048 × 7 × 7

Figure 5: Comparison of reconstruction results with different
encoders.

mesh to the nearest neighbor point on the reconstructed mesh.
The third is the food volume error, which represents the absolute
volume error of the food. The food volume is calculated from the
difference between the dish and the plate. The fourth is the relative
food volume error, which is the relative volume error of the food.
This metric is the ratio of how much the inferred food volume
differs from the ground truth food volume.

4.3 3D reconstruction of dish and plate
First, we made experiments using the three types of encoders men-
tioned above to see if our method could reconstruct 3D shape
correctly. Image dataset A was relatively easy to learn and was used
for training. The results of the quantitative evaluation are shown
in Table 2. As a result, the method using Custom Unet was superior
in both reconstruction accuracy and volume estimation.

Next, as for the qualitative evaluation, the reconstruction results
are shown in Figure 5. It can be seen that the case using Custom
UNetwas themost accurate quantitatively, but it was also good qual-
itatively. It can be seen that the final output of ResNet50 completely
loses the details of the food shape, and even when the intermedi-
ate features of ResNet50 are used, the details of the meal are not
captured correctly compared to the method using Custom Unet.
From this experiment, it is clear that the size of encoder features is
extremely important.
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Table 2: Quantitative results of 3D reconstruction of dish and plate using RGB-D images. In the table, C-L1 means Chamfer L1
distance, FVE means Food Volume Error, and r-FVE means relative Food Volume Error.

encoder C-L1 (dish) IoU (dish) C-L1 (plate) IoU (plate) Mean FVE (cm3) Median FVE (cm3) Mean r-FVE Median r-FVE
Custom UNet 0.00341 0.702 0.00581 0.537 73.253 46.046 0.595 0.13

ResNet50 (Layer 4) 0.00445 0.636 0.00607 0.437 167.271 99.129 0.658 0.377
ResNet50 (Layer 1-4) 0.00516 0.558 0.00566 0.470 80.4859 54.293 0.633 0.166

Figure 6: Comparison of models using depth-value sampling
and depth features with models using only depth features.
It can be seen that the depth value sampling contributes to
the clear contours of the dish reconstruction results and the
accurate reconstruction of the plate.

Figure 7: Distributions of volume errors were calculated for
the evaluated dataset using the method with the highest
accuracy. The left panel shows the distribution of absolute
volume error, and the right panel shows the distribution of
relative volume error. The mean of absolute volume error is
79.524 (cm3), and the median is 51.241 (cm3). The mean and
median of the relative errors are 0.688 and 0.15, respectively.

Figure 8: The two input images and reconstruction results
that yielded the worst relative errors.

4.4 The effect of depth image utilization
methods.

When the proposed method is used in an application, the depth is
not always fixed, as in the case of Image dataset A. Therefore, we
used Image dataset B, which has a more realistic setting for training,
to experiment with how handling depth images contributes to accu-
racy. We used the Custom UNet, the most accurate encoder for all
the methods. The results are shown in Table 3. Table 3 shows that
the method using both depth value sampling and depth features
is the most accurate. Figure 6 shows qualitatively how the recon-
struction results differ between the best method and the method
using only depth features. It can be seen that not only the depth
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Figure 9: The results are trained on Image dataset B using Custom UNet as encoder and the method used for depth value
sampling and depth features. Inputs are an RGB-D image and camera parameters.



MADiMa ’22, October 10, 2022, Lisboa, Portugal Shu Naritomi and Keiji Yanai

Table 3: Comparison of which method of utilizing depth images gives the best accuracy. In the table, S means depth value
sampling, and C means depth features obtained from CNN. Otherwise, the notation is the same as in Table 2.

Depth valid C-L1 (dish) IoU (dish) C-L1 (plate) IoU (plate) Mean FVE (cm3) Median FVE (cm3) Mean r-FVE Median r-FVE
C, S 24/24 0.00307 0.567 0.00498 0.407 79.524 51.24 0.688 0.150
C 24/24 0.00333 0.534 0.00592 0.337 112.314 90.291 0.616 0.259
S 23/24 0.00847 0.356 0.0104 0.124 125.344 104.122 0.791 0.32

None 1/24 invalid invalid invalid invalid invalid invalid invalid invalid

image feature but also the depth value sampling is used as the in-
put of the decoder, resulting in clear contours of the reconstructed
dish and accurate reconstruction of the plate. Figure 9 shows the
reconstruction results of the most accurate method using Custom
UNet as an encoder, depth value sampling and depth features.

4.4.1 Volume Error Analysis. We analyzed the volumetric error
of the model with Custom UNet and depth value sampling and
depth features, which was the most accurate model in Table 3.
The distribution of the volume error is shown in Figure 7. The
absolute error is less than 50cm3, and the relative error is less than
0.2 for most of the data, indicating good accuracy. Two inputs with
extremely poor relative errors and their reconstruction results are
shown in Figure 8. In both cases, the reconstructed tableware is
thinner or chipped compared to the meal. The plate consistency
loss is a loss function that prevents a situation in which the dish
does not occupy the space occupied by the plate, but the opposite
is not correctable, which may be the reason for this problem.

5 CONCLUSION
In this paper, we propose “Real Scale Hungry Networks”, a real-size
3D reconstruction method using RGB-D images and camera models
to solve the problem of our previous work, “Hungry Networks” [12],
that the reconstructed objects are not real scale. By utilizing depth
images, this method reconstructs 3D objects accurately as they are
in real scale without normalizing 3D shapes. Also, using the re-
construction results, a highly accurate estimation of actual volume
is realized. In future work, we would like to utilize the estimated
volume for calorie estimation and other purposes.
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