

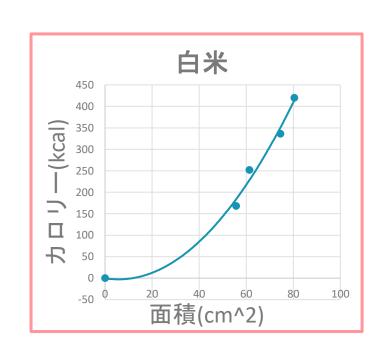
全体カロリー量のみがアノテーションされた 複数品食事画像の個別カロリー量推定

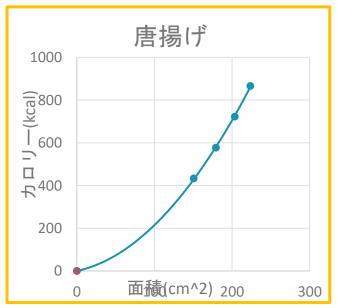
電気通信大学

岡本 開夢 <okamoto-ka@mm.inf.uec.ac.jp>

足立 賢人 <adachi-k@mm.inf.uec.ac.jp>

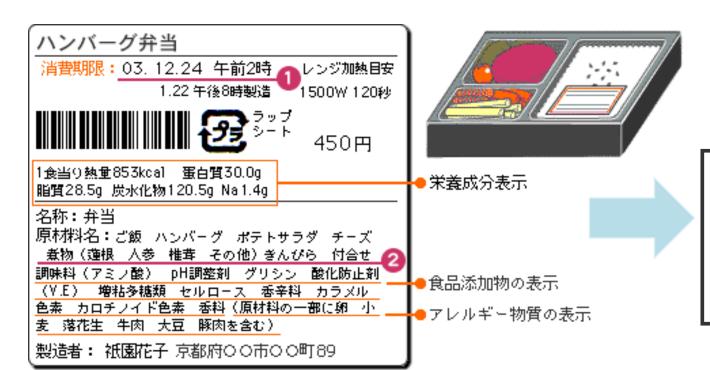
柳井 啓司 <yanai@cs.uec.ac.jp>


研究背景



食事領域の面積とカロリー量にはカテゴリー個別の関係式がある

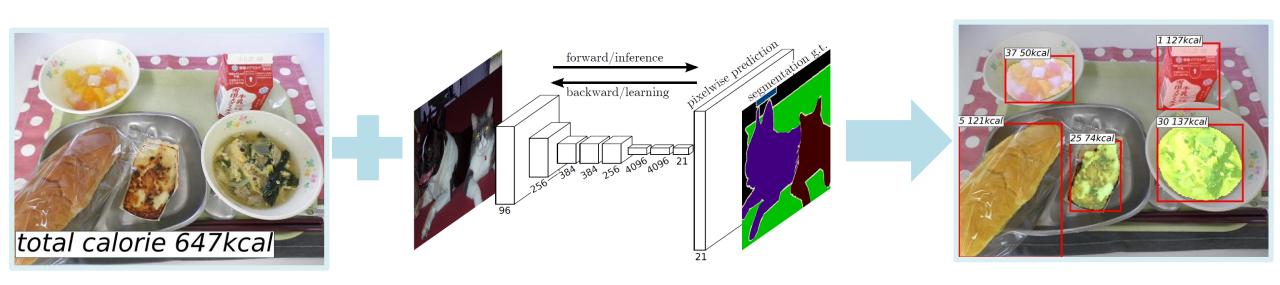
各食事カテゴリの回帰式



研究背景

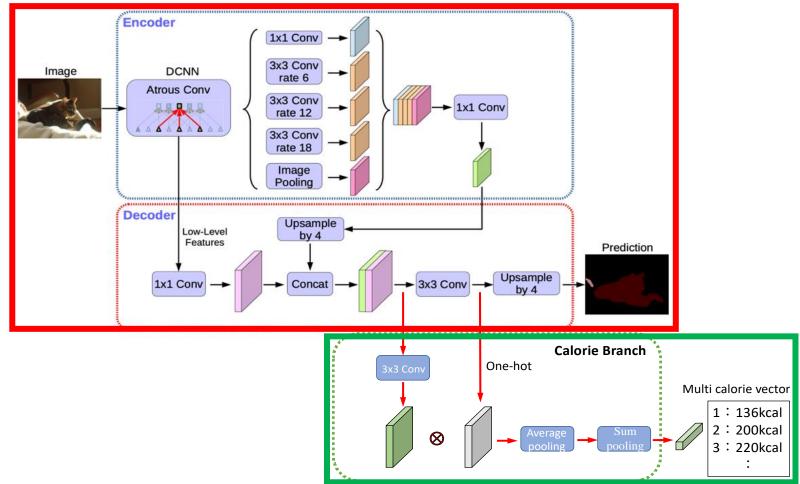
実生活における栄養素の表記においては全体カロリー量のみを表示

各食事のカロリー量につい ては表示されていない



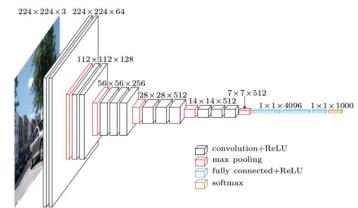
研究目的

本研究の目的


全体カロリー量が既知の画像を用いて、領域推定により各食事カテゴリニとのカロリー量推定を行う手法を提案

領域推定部分とカロリー量推定部分の2つで構成

給食画像からカロリー量を推定する実験を行った


• **モデルA**:画像からカロリー量を推定する回帰モデル

モデルB:モデルA+マルチラベル

• モデルC(提案手法):領域推定モデル+回帰モデル

評価画像が違うため参考モデルとして記述

・ 會下らの手法:食事検出+単品食事回帰モデル

実験結果

合計カロリー量の絶対誤差(kcal)と相対誤差(%)

モデル	絶対誤差 (kcal)	相対誤差 (%)	≤20%誤差	≤ 40%誤差
モデルA (回帰モデル)	45.0	7.3%	99.2%	100%
モデルB (マルチラベル)	44.2	6.9%	96.1%	100%
モデルC (領域推定モデル)	74.8	14.6%	80.7%	96.6%
参考モデル (食事検出+回帰モデル)	136	21.4%	53.0%	85.1%

7

実験結果

各モデルによる60カテゴリのカロリー量の平均推定値の抜粋結果

食事カテゴリ	モデルA	モデルB	提案手法	参照カロリー量
牛乳	11.5	457.6	123.3	130
ご飯	12.1	50.9	209.4	250
食パン	10.8	7.5	190.3	220
グリーンサラダ	11.9	33.0	68.9	50
豚のロース焼き	12.2	2.5	74.4	240
味噌スープ	10.3	59.9	147.6	159
みかん	9.6	0.5	45.5	50