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Human-Object Interaction (HOI) Detection

 HOI Detection

• Predict a set of <human, object, interaction> triplets within an image

 HOI Instance
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HICO-DET [1]

 HOI benchmark

• Training 38,118

• Test: 9,658

 Diversity

• 117 action classes

• COCO’s 80 object classes

• 600 HOI classes

[1] Chao, Yu-Wei, et al. "Learning to detect human-object interactions." 2018 ieee winter conference on applications of computer vision (wacv). IEEE, 2018.
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HOI Detection Approaches

 Two-stage (Bottom-up)

• Build upon an off-the-shelf object detector

• Object & Human Detection      Interaction Recognition on Pairs

 One-stage (Top-down)

• Interaction Points & HOI Pair Matching
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HOI Detection Timeline 5



Advancements of HOID
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① QAHOI
• Use multi-scale feature maps to 

utilize features at different scales

② PQNet
• Parallelize queries to speed up 

convergence

③ SOV-STG
• Combine the advantages of QAHOI 

and PQNet, and introduce denoising 

learning

②

③

①



QAHOI: Query-Based Anchors for Human-Object 
Interaction Detection

Chen, Junwen, and Keiji Yanai. "QAHOI: Query-Based Anchors for Human-Object Interaction Detection." arXiv e-prints (2021): arXiv-2112.



HOI Detection Approaches

 Transformer-based One-stage

• Adapted from Transformer-based object detector DETR

• Set-based Prediction

[2] Tamura, Masato, Hiroki Ohashi, and Tomoaki Yoshinaga. "QPIC: Query-based pairwise human-object interaction detection with image-wide contextual information." Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

[3] Carion, Nicolas, et al. "End-to-end object detection with transformers." European conference on computer vision. Springer, Cham, 2020.

DETR [3]
QPIC [2]
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Motivation

 The spatial distribution of the HOI instances in HICO-DET 

• Small objects & Close human-object pairs

• High-resolution feature maps are better to restore detailed features

 Transformer-based methods lack a multi-scale architecture

(a) Larger Area (b) Center Distance
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Overview of QAHOI

• Multi-scale feature maps from a hierarchical backbone

• A new representation of HOI instances: Query-based Anchors

• Deformable Transformer Encoder-Decoder Architecture [4]

• Training from scratch

[4] Zhu, Xizhou, et al. "Deformable DETR: Deformable Transformers for End-to-End Object Detection." International Conference on Learning Representations. 2020.
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QAHOI: Multi-scale Feature Extractor

 Feature Extractor of QPIC

• CNN Backbone + Transformer Encoder [5]

• Low-resolution feature maps from last Stage

Multi-scale Feature Extractor of QAHOI

• Hierarchical Backbone (CNN-based or Transformer-based) + Deformable Transformer Encoder

• Multi-scale feature maps from multiple stages

[5] Dosovitskiy, Alexey, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." International Conference on Learning Representations. 2020.
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Comparison with State-of-the-Arts

• Best Model: QAHOI with Swin-Transformer [6] Backbone

• 150 epochs of training

+5.88

(19.7%)

+4.1

(13.9%)
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[6] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021.



Contribution at Different Spatial Scales

• The ground-truth HOI instances in the test set of HICO-DET is divided into 10 bins

• The bins with more than 1,000 instances are selected to display the AP results
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(a) AP results on different large areas. (b) AP results on different center distances.



Qualitative Analysis

 The flexibility of Query-Based anchors

• Far from center

• Close to person or object

The flexibility of the anchors. 
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Parallel Queries for Human-Object Interaction Detection
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Motivation: More Accuracy and Faster Convergence

 Problems of the previous methods

• Transformer-based one-stage methods

• DETR [Carion et al. ECCV2020] is applied to the HOI task

• The decoding target of DETR is changed
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QPIC [Tamura et al. CVPR2021] CDN [Zhang et al. NIPS2021] Proposed method: PQNet

All of the elements are 

predicted by the same decoder

Human and object prediction 

are tangled in the H-O decoder

• Human prediction is disentangled

• Maintaining the targets of the object 

detector



Parallel Queries for Human-Object Interaction Detection

 Overview

• Parallel queries are used to split the detecting process

• The verb decoder focuses on extracting the verb representations
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Verb Decoder

 Human-object Embedding Fusion

• Two kinds of attention mechanisms

• The HOEF module is used to form the verb embedding

• The cross-attention module is used to extract verb information from the context
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Experiments

 Compare with current state-of-the-art (SOTA) methods
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+3.06
(10.5%) +0.35

(1.1%)

+0.80
(2.5%)



Experiments

 The training convergence

• Parallel queries & decoders

• Improve the model’s performance

• Accelerate the convergence

• Compare to previous SOTA

• 2× mAP at the first epoch

• Fast convergence in the first 40 epochs
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Qualitative Analysis

 The visualization of attention maps

• CDN concentrate on the object more than 

the human

• PQNet learned to focus on the extreme 

points of the target

• The verb decoder focuses on the whole part of the 

human and object but pays more attention to 

the interaction regions
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Subject Object Verb (SOV) Decoders with Specific Target Guided (STG) 



SOV-STG: Focusing on what to decode and what to train

 End-to-end training pipeline 

• SOV framework splits the decoding 

process into three parts

• STG training strategy efficiently transfers 

the ground-truth information
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SOV-STG: Overview

• The position information is separated from the context query

• Multi-scale feature extractor and SOV decoders

• Learnable anchor boxes and label embeddings provide prior knowledge for inference and noise removal learning
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SOV-STG: Split Target Guided DeNoising

 DN Query 

• Two part initialization

• Object Label DN Query

• Verb Label DN Query

• Label Priors

• Learnable Label Embeddings both 

used in training and inference 
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Experiments

 The training convergence
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Experiments

 Compare with current state-of-the-art (SOTA) methods
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+4.45%

1/3 epoch



Conclusion

 Summary

• A multi-scale transformer-based method, QAHOI for HOI.

• A novel transformer-based one-stage method for HOI detection with 

parallel queries.

• A new way to represent HOI instances based on query-based anchors

 Future Work

• Fast and Powerful

• Improved Prior Knowledge
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