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Abstract—In recent years, human-object interaction detection
(HOID) has attracted increasing attention in the computer vision
community and has been greatly advanced by the introduction
of transformer-based models. However, the representation capa-
bility of the pre-trained object detection modelis is insufficient
for capturing the complex interactions between humans and
objects, which limits the performance of HOID methods. In
this paper, we introduce three methods to progressively enhance
the representation capability. (1) We propose QAHOI to take
advantage of multi-scale feature maps with different spatial
scales. (2) We propose PQNet to speed up training convergence
with parallel queries. (3) We propose SOV-STG to combine
the merits of QAHOI and PQNet and introduce the denoising
learning strategy and vision language model to further improve
training convergence and performance. Our proposed method
SOV-STG achieves state-of-the-art performance on the HICO-
Det dataset with one-third of the training epochs compared to
previous SOTA methods.

Index Terms—Human-Object Interaction, Transformer

I. INTRODUCTION

Human-object interaction detection (HOID) task as a down-
stream task of object detection is largely dependent on the pre-
trained object detection model. HOID models are required to
predict HOI instances by detecting pairs of humans and objects
and recognizing the interactions between them. From first of
the beginning, CNN-based two-stage HOID methods [1]–[10]
leverage the off-the-shelf object detector [11], [12] to detect
humans and objects, and then introduce additional branches
or modules to recognize the interactions between each pair of
them. To improve the efficiency of HOID models, CNN-based
one-stage methods [13]–[15] are proposed to detect human-
object pairs and recognize their interactions at the same time.

Recently, vision transformer [16] has been successfully
applied to various computer vision tasks. The self-attention
mechanism in the transformer can capture long-range de-
pendencies and global context information, which is crucial
for the HOID task. Thus, transformer-based one-stage HOID
methods [17]–[20] built upon the transformer-based object de-
tector [21] are proposed to extract more context information of
HOI pairs from the image. However, there are problems such
as the slow training convergence and the high computational

cost in DETR, which limits the performance of transformer-
based HOID methods. Recently, various methods have been
proposed to improve DETR [22]–[24]. Similarly, HOI detec-
tion methods can achieve higher accuracy by improving the
detection architecture. In this paper, we start from the most
basic transformer-based HOID model [17], [18] and reduce the
learning cost and improve the accuracy in the three following
works: QAHOI [25], PQNet [26] and SOV-STG [27].

II. RELATED WORK

Transformer-based HOID methods view the HOID as a
set prediction problem, which does not need a matching
process between human and object proposals. QPIC [17]
and HOITrans [18] add the human box FFN (Feed-forward
Network) head and the interaction class FFN head to DETR.
Thus, each query embedding can represent an entire HOI
instance <Human Box, Object Box with Category, Interaction
Category> during the decoding process. However, the direct
adaptation of DETR to the HOID task has some limitations.
The decoder’s training burden is heavy, and the performance
is limited. Subsequent works [28]–[31] propose additional
decoders or modules to facilitate the interaction recognition
process. CDN [28] adopts a cascade architecture with an
additional interaction decoder to disentangle the interaction
recognition process from the object detection process. GEN-
VLKT [32] improves the decoding process of CDN and
introduces a learning strategy to transfer the prior knowledge
of CLIP [33] to the HOID model. In this paper, we focus
on improving the representation capability from both the
detection framework and the decoding process from the input
query to the output prediction heads.

Recently, DN-DETR [24] proposes a denoising learning
method with ground-truth information for the DETR-based
method and improves the efficiency of learning. Similarly, in
the HOID task, DOQ [34] and HQM [35] propose to use the
ground-truth label or box information to guide the learning
process. However, without a specific denoising target, the
learning process is still inefficient. In this paper, we introduce
an HOI-specific denoising learning strategy and efficiently
reduce the training burden of the HOID model.



Fig. 1: Overview architecture of QAHOI.

Fig. 2: Decoding process of QAHOI.
Fig. 3: Anchor-based HOI heads.

III. METHOD

In this section, we will introduce the motivations, the
designs, and the advantages of our proposed methods. We
first explore the detection framework and the representation
of query embeddings (in Section III-A, QAHOI [25]), and
then show the importance of the disentanglement of the
human-object detection with parallel queries (in Section III-B,
PQNet [26]), and finally, we extend the idea of QAHOI and
PQNet to a more advanced method with optimized architecture
and learning strategy (in Section III-C, SOV-STG [27]).

A. QAHOI

Transformer-based HOID method QPIC [17] surpasses the
previous CNN-based HOID method [13], [15] by a large mar-
gin. However, due to the transformer’s quadratic computational
complexity, it only uses low-resolution feature maps from the
last layer of a CNN backbone. The small and overlapping
objects commonly exist in HOI images, and the low-resolution
feature maps are not sufficient to capture the detailed infor-
mation about these objects. Deformable DETR [22] (DDETR)
designs a Deformable Multi-Scale Attention Module to reduce
the complexity of attention in DETR according to the spatial
size and achieves multi-scale Transformer-based object detec-
tion. Following the idea of DDETR, we propose a multi-scale

anchor-based HOI detection method Query-based Anchors for
Human-Object Interaction Detection (QAHOI) [25].

Multi-scale feature extractor. QPIC [17] follows
DETR [21] to construct a feature extractor consisting
of a CNN backbone and a transformer encoder, and uses
low-resolution feature maps from the backbone, making it
difficult to extract small-scale spatial information. The query
embeddings used to represent the HOI instances are refined
during the decoding process through cross-attention with the
global context feature map. Improving the representation of
the global context feature map can effectively improve the
performance of the HOID model, thus, QAHOI combines
a hierarchical backbone and a deformable transformer
encoder [22] to build a multi-scale feature extractor, as shown
in Fig. 1. It can use CNN-based (ResNet [36]) or transformer-
based backbones (Swin-Transformer [37]). Specifically,
QAHOI uses the feature maps of the last three stages of
the backbone, x1 ∈ R2Cs×H

8 ×W
8 , x2 ∈ R4Cs× H

16×
W
16 , and

x3 ∈ R8Cs× H
32×

W
32 . The feature maps x1, x2, and x3 are

projected from Cs dimensions to Cd = 256 dimensions using
1× 1 convolutional layers.

Anchor-based decoding. The decoding process of the de-
formable transformer decoder is shown in Fig. 2. The query
embedding of QAHOI is divided into the HOI query embed-



Fig. 4: Overview architecture of PQNet.

Fig. 5: Verb decoder of PQNet.

ding QHOI ∈ RNq×Cd and the position embedding QPos ∈
RNq×Cd , where Nq is the number of queries. The anchor
P ∈ RNq×2 is generated from the position embedding QPos

through a linear layer. With the encoded semantic feature
from the deformable transformer encoder, the HOI query
embedding QHOI , and the anchor P , the HOI embedding
E ∈ RNq×Cd is decoded by the attention mechanism of
the deformable transformer decoder. Self-attention and multi-
scale deformable attention [22] are calculated NL times in
NL decoder layers, and the HOI embedding for predicting
HOI instances is output in the last layer. For the HOID task,
with explicit guidance from the anchor, the HOI embedding
can capture more detailed information from the multi-scale
feature maps, and the representation capability is enhanced.
Anchor-based HOI detection heads. Similar to QPIC, QA-
HOI uses additional heads to predict the human box and the
interaction class. However, different from QPIC, the prediction
burden of localizing is shared by the anchor. As shown in
Fig. 3, each anchor (px, py) of the anchor set P ∈ RNq×2 is
used as a reference point for the human-object pair box. In the
interaction head, the box elements Bh and Bo ∈ RNq×4 of
the human and object predicted by the Feed-forward Network
(FFN) are composed of {dx, dy, w, h}. The final bounding
boxes B̂h and B̂o are composed of {dx + px, dy + py , w,
h}. Finally, the object class O ∈ RNq×Ko of the object box
and the interaction class A ∈ RNq×Ka of the HOI instance
are combined with the human and object bounding boxes B̂h,

B̂o to construct the output of the HOI instance.

B. PQNet

QPIC [17], HOITrans [18], and subsequent work CDN [28]
use the same query embeddings to represent the entire HOI
instance. The decoded target embeddings are used to represent
both object and human features simultaneously. However,
using highly integrated embeddings to simultaneously locate
humans and objects is not optimal. By separating human and
object detection, higher accuracy can be achieved. To this
end, we propose the Parallel Query Network (PQNet) [26],
which divides the decoding process into human decoding and
object decoding and detects humans and objects in parallel
using parallel queries. As shown in Fig. 4, PQNet uses two
transformer decoders to decode human embeddings and object
embeddings in parallel. PQNet uses two Transformer decoders
to decode human embeddings and object embeddings in par-
allel. In addition, we introduce a verb decoder to fuse human
embeddings and object embeddings and predict interactions.
By optimizing the detection part and advancements of verb
embeddings, PQNet outperforms QPIC in less than half the
number of training epochs.
Object detector and feature extractor. As shown in Fig. 4,
the object detector of PQNet is the same as DETR. The CNN
backbone and the transformer encoder constitute the feature
extractor. Given an input image I ∈ R3×H×W , the CNN back-
bone extracts the appearance feature map f ∈ R8Cs× H

32×
W
32 .

The feature extractor outputs the global semantic feature
S ∈ RNs×Cd (Ns = H

32 × W
32 ). In the object decoder, the

global semantic feature S is used as the source input, and the
query is used by the decoder to extract object embeddings.
Detection with parallel queries. The basic idea of PQNet
is to use parallel queries to split the detection process. Specif-
ically, we introduce a subject (human) decoder with the same
architecture as the object decoder. The object decoder and the
subject decoder share the HOI query embedding Q ∈ RNq×Cd



Fig. 6: Overview architecture of SOV-STG.

Fig. 7: End-to-end training pipeline of SOV-STG. Fig. 8: DN query initialization.

and output the object embedding Qo ∈ RNq×Cd and the sub-
ject embedding Qh ∈ RNq×Cd , respectively. Next, the object
embedding is used to predict the object box B(o) ∈ RNq×4 and
the object category Co ∈ RNq×Ko , where Ko is the number
of object categories. The subject embedding is used to predict
the human box B(h) ∈ RNq×4. Since the same pipeline is
used to predict object instances and subject instances, the part
of subject detection with a feature extractor can be considered
as a subject detector.

Verb decoder. With the additional semantic information
extracted by our subject decoder, we introduce a verb decoder
to fuse the object embeddings and the subject embeddings and
integrate the global semantic features. As shown in Fig. 5, our
verb decoder computes two types of attention mechanisms se-
quentially using two modules. The Human-Object Embedding
Fusion (HOEF) module fuses the embeddings of the last layers
of the object decoder and the subject decoder to output the

verb embedding. Specifically, given the object embedding Qo

and subject embedding Qh obtained, the verb embedding Qv

fused by HOEF is calculated as follows:

Qv = HOEF(Qo, Qh) = LN(σ(Sum(Head(1), ...,Head(n)))),

Head(i)(Qo, Qh) = W
(i)
fuseσ(W

(i)
o Qo ◦W (i)

h Qh)
(1)

where Wo,Wh ∈ RKd×Ks , and Wfuse ∈ RCd×Cm (Cm =
Cd

n ) are projection weight matrices, n is the number of atten-
tion heads, LN is the layer normalization, σ is the activation
function, and ◦ is the element-wise product. Then, the cross-
attention module computes the attention between the verb
embedding Qv and the global semantic feature S. Finally, the
refined verb embeddings in the last layer of the cross-attention
module is used to predict the verb (interaction) class of the
HOI instance.



Default Known Object
Method Epoch Backbone Full Rare Non-Rare Full Rare Non-Rare

QPIC [17] 150 ResNet-50 29.07 21.85 31.23 31.68 24.14 33.93
CDN-S [28] 100 ResNet-50 31.44 27.39 32.64 34.09 29.63 35.42
CDN-B [28] 100 ResNet-50 31.78 27.55 33.05 34.53 29.73 35.96
CDN-L [28] 100 ResNet-101 32.07 27.19 33.53 34.79 29.48 36.38
PQNet-S [26] 70 ResNet-50 31.92 28.06 33.08 34.58 30.71 35.74
PQNet-B [26] 100 ResNet-50 32.13 29.43 32.93 34.68 32.06 35.47
PQNet-L [26] 100 ResNet-50 32.45 27.80 33.84 35.28 30.72 36.64
HQM (CDN-S) [35] 80 ResNet-50 32.47 28.15 33.76 35.17 30.73 36.50
RLIP-ParSe [38] 90 ResNet-50 32.84 34.63 26.85 - - -
MUREN [39] 100 ResNet-50 32.87 28.67 34.12 35.52 30.88 36.91
DOQ (CDN-S) [34] 80 ResNet-50 33.28 29.19 34.50 - - -
GEN-VLKT-S [32] 90 ResNet-50 33.75 29.25 35.10 36.78 32.75 37.99
HOICLIP [40] 90 ResNet-50 34.69 31.12 35.74 37.61 34.47 38.54
GEN-VLKT-M [32] 90 ResNet-101 34.78 31.50 35.77 38.07 34.94 39.01
GEN-VLKT-L [32] 90 ResNet-101 34.95 31.18 36.08 38.22 34.36 39.37
QAHOI-Swin-L [25] 150 Swin-Large-22K 35.78 29.80 37.56 37.59 31.36 39.36
FGAHOI-Swin-L [41] 190 Swin-Large-22K 37.18 30.71 39.11 38.93 31.93 41.02
DiffHOI-Swin-L [42] 90 Swin-Large-22K 41.50 39.96 41.96 43.62 41.41 44.28
SOV-STG-S 30 ResNet-50 33.80 29.28 35.15 36.22 30.99 37.78
SOV-STG-M 30 ResNet-101 34.87 30.41 36.20 37.35 32.46 38.81
SOV-STG-L 30 ResNet-101 35.01 30.63 36.32 37.60 32.77 39.05
SOV-STG-Swin-L 30 Swin-Large-22K 43.35 42.25 43.69 45.53 43.62 46.11

TABLE I: Comparison to the state-of-the-art on the HICO-DET.

C. SOV-STG

Our QAHOI improves the detection framework and the
representation of query embeddings, and PQNet promotes the
use of query embeddings and the fusion of verb embeddings.
To combine these two advancements and further improve the
learning efficiency, we propose Subject Object Verb (SOV)
framework. To improve learning efficiency, we propose a
denoise learning method Specific Target Guilded (STG) that
introduces prior knowledge using learnable object and verb
label embeddings.

Fig. 6 shows the architecture of the proposed method SOV-
STG [27]. The design of the SOV framework is an extension
of the multi-scale architecture in Section III-A and the parallel
query idea in Section III-B. Specifically, we construct the ar-
chitecture of object decoder, subject decoder, and verb decoder
using anchor boxes to represent HOIs. We introduce a new
Adaptive Shifted Minimum Bounding Rectangle (ASMBR)
to generate verb boxes from the output boxes of the object
decoder and subject decoder. As shown in Fig. 7, with the
explicit object and subject anchor boxes, the object and subject
decoders obtain clear position denoising targets directly from
the input by adding noise to the ground truth anchor boxes. We
define two types of learnable label embeddings, object label
prior and verb label prior. By defining label embeddings, the
model can obtain label-specific information from the ground
truth labels in both the training and inference stages. Besides,
according to PQNet, we introduce a novel Subject-Object (S-
O) attention module to fuse object and subject information and

improve the verb representation learning ability. As a result,
SOV-STG achieves SOTA performance with one-third of the
training epochs compared to previous SOTA methods.
Prediction of HOI instances using anchor boxes. To
clarify the decoding target of the query embedding, the
SOV framework utilizes the attention mechanism of DAB-
Deformable-DETR [23] and directly uses learnable anchor
boxes for predicting human and object boxes. With the object
and subject boxes, our proposed ASMBR generates verb boxes
to provide the spatial relationship between human boxes and
object boxes for our verb decoder. As shown in Fig. 7, given
the predicted human box Bs = (xs, ys, ws, hs) and object box
Bo = (xo, yo, wo, ho) (where (x, y) is the center of the box)
from the final layer of the decoder, the verb box is defined as
follows:

Bv =

(
xs + xo

2
,
ys + yo

2
, wv, hv

)
(2)

wv =
ws + wo

2
+ |xs − xo|, hv =

hs + ho

2
+ |ys − yo| (3)

ASMBR is a method to shrink and move the Minimum
Bounding Rectangle (MBR). The purpose of the shrinkage
(adaptive) and movement (shift) is to remove information with
low relevance far from the interaction area and to cover more
context information around the interaction area.
SOV decoders. It is important to design separate decoders to
clarify the decoding targets. The same as QAHOI, a mult-scale
feature extractor is adopted. Similar to PQNet, split decoders
are used to decode object and subject embeddings and update



object and subject anchor boxes in parallel. Our SOV decoders
share the same architecture and extract semantic features with
the guidance of corresponding anchor boxes.
S-O attention module. As shown in Fig. 7, to integrate the
prior knowledge of verb labels when fusing features, we fuse
the verb label embedding with S-O attention. Furthermore,
we design a bottom-up path for S-O attention to enhance
information from lower layers to upper layers. Givin the i-
th layer (i > 1) subject embedding esi ∈ RNq×Cd and the
object embedding eoi ∈ RNq×Cd . The verb embedding evi

can be defined as follows:

evi =((CrossAttn(esoi−1 , tv) + esoi−1)

+ (CrossAttn(esoi , tv) + esoi))/2
(4)

esoi = (eoi + esi)/2 (5)

Split label priors. We use two learnable label embeddings to
initialize the query embedding of the SOV decoder. The object
label embedding to ∈ RCo×Cd , which consists of Co Cd-
dimensional vectors, is defined as prior knowledge of object
labels. Similarly, the verb label embedding tv ∈ RCv×Cd is
defined as prior knowledge of verb labels. Using the prior
knowledge of object and verb labels, we initialize the object
label embedding qo ∈ RNq×Cd and the verb label embedding
qv ∈ RNq×Cd by linearly combining them. Then, we add
the object and verb label embeddings to obtain the inference
query embedding qov ∈ RNq×Cd . The linear combination is
defined using two learnable matrices Ao ∈ RNq×Co and Av ∈
RNq×Cv as follows:

qo = Aoto, qv = Avtv (6)

qov = qo + qv (7)

Specific Target Guided Denoising. In Fig. 8, we illustrate
the process of DN (DeNoising) query initialization and adding
noise to the ground-truth HOI instances. Given the ground-
truth object label set Ogt = {oi}Ki=1 and verb label set Vgt =
{vi}Ki=1, two types of label DN queries are initialized. Here,
oi and vi are one-hot labels of object class and verb class, and
k is the number of ground-truth HOI instances. For the k-th
ground-truth HOI instance, the ground-truth index of the object
label ok is randomly flipped to the other object class indices to
obtain the noisy object label o′

k, and Np groups of noisy labels
are generated. Next, the object DN query q

(o)
dn ∈ RNp·K×Cd

is collected from the object label embedding to according to
the indices of the noisy object label O′

gt. Since the verb label
has co-occurrence ground-truth classes, the other indices of
the ground-truth verb label are randomly flipped to generate
the noisy verb label v′

k so that the co-occurrence ground-truth
index appears in the noisy verb label. Similar to the object
DN query, the verb label DN query q

(v)
dn ∈ RNp·K×Cd is the

sum of the verb label DN embeddings selected from the verb
label embedding tv according to the indices of the noisy verb
label V ′

gt. Finally, the object DN query and verb DN query
are concatenated to form the DN query qdn ∈ R2Np·K×Cd for
noise removal learning.

IV. EXPERIMENTS

Dataset and Metric. We evaluate our proposed methods
on the HICO-Det dataset [1]. The HICO-Det dataset con-
tains 38,118 images for training and 9,658 images for the
test with 117 verb and 80 object categories and 600 HOI
categories. The mean Average Precision (mAP) is used as the
evaluation metric. Specifically, for a true positive result, the
intersection over union (IoU) between the predicted human and
object bounding boxes and the ground-truth human and object
bounding boxes need to be higher than 0.5, and the predicted
object class and verb class need to be right. According to the
evaluation protocol of HICO-Det [1], the mAP is calculated in
two settings: the default setting and the known object setting,
and three categories Full (all of 600 HOI classes), Rare (138
HOI classes with less than 10 instances), Non-Rare (462 HOI
classes with 10 or more than 10 instances) for each setting.
Implementation Details. Our QAHOI and PQNet follow
the setting of QPIC [17]. QAHOI is trained for 150 epochs
which is the same as QPIC. We use Swin Transformer [37]
as the backbone of QAHOI. Three variants of PQNet are
implemented: PQNet-S with ResNet-50 backbone and 3-layer
decoders, PQNet-B with ResNet-50 backbone and 5-layer
decoders, and PQNet-L with ResNet-101 backbone and 5-
layer decoders. For PQNet-S, we train the model for 70
epochs while PQNet-B and PQNet-L for 100 epochs. Our
SOV-STG uses the same setting as QAHOI and is trained
for 30 epochs. Similarly, for SOV-STG, we implement three
variants: SOV-STG-S with ResNet-50 backbone and 3-layer
decoders, SOV-STG-M with ResNet-101 backbone and 3-layer
decoders, and SOV-STG-L with ResNet-101 backbone and
6-layer decoders. For QAHOI and SOV-STG, we also use
Swin Transformer [37] as the backbone to achieve SOTA
performance.
Comparison with SOTA. Table I shows the comparison of
our proposed methods with the state-of-the-art methods on the
HICO-Det dataset. Compared to the previous SOTA method,
CDN [28], our PQNet-S achieves better performance with
fewer training epochs. Compared to the recent SOTA method,
GEN-VLKT [32], our SOV-STG achieves better performance
with only one-third of the training epochs. For the best
performance, our SOV-STG-Swin-L achieves 43.35 mAP on
the Full category in the Default setting and is 4.5% higher than
DiffHOI-Swin-L [42] which uses large-scale synthetic images.

V. CONCLUSION

In this paper, we focus on improving the model repre-
sentation capability and introduce three novel methods for
HOI detection: QAHOI [25], PQNet [26] and SOV-STG [27].
QAHOI improves the detection framework with the multi-
scale architecture and query-based anchors. PQNet improves
the query embedding and the fusion of verb embeddings. SOV-
STG combines the advantages of QAHOI and PQNet and
introduces the prior knowledge from the ground-truth with
a denoising learning strategy. With the above advancements,
our SOV-STG achieves SOTA performance with one-third of
training epochs compared to the previous SOTA.
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