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ABSTRACT
We address evaluation of image understanding and retrieval
large scale image data in the context of three evaluation
projects. The first project is a comprehensive strategy for
evaluating image retrieval algorithms and provides an open
reference data set for doing so. The second project develops
word prediction as a semantically relevant evaluation strat-
egy, and applies it to the evaluation of of image processing
methods for semantic image analysis. The third project eval-
uates words for suitability of their visual properties for use
in an image annotation framework.

Categories and Subject Descriptors
H5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems

General Terms
Algorithms, Design, Human Factors, Experimentation

Keywords
Evaluation, Image Retrieval, Image Recognition

1. INTRODUCTION
Automated methods for browsing and searching large im-

age data sets promise instant access to vast amounts of vi-
sual information. However, to provide such tools we need to
develop much more effective methods for inferring semantics
from visual data. To move forward we need to more precisely
understand what it is that we are trying to achieve, which
naturally links to understanding how to measure it. This
thinking has lead us to three research projects related to
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the evaluation of image understanding and retrieval. The
linking theme is that we need to measure performance on
a true semantic level, reflecting the users’ needs. Strategies
for evaluation include grounding retrieval in human evalua-
tion (first project), and using word prediction as a measure
for semantic understanding that can be applied on a large
scale (second project). In our third project we consider the
notion that evaluation must be done in the scope of seman-
tics which can be linked to visual features, and we provide
a method for mining large datasets for words that have mu-
tual information with visual features. This helps large scale
evaluation and algorithm development because we exploiting
larger data sets becomes more tractable once the non-visual
words have been pruned.

In §2 we present a comprehensive strategy for evaluating
image retrieval algorithms and provides an open reference
data set for it [43]. Because automated image retrieval is
only meaningful in its service to people, performance char-
acterization must be grounded in human evaluation. Thus
we have collected a large data set of human evaluations of
retrieval results, both for query by image example and query
by text. The data is independent of any particular image
retrieval algorithm and can be used to evaluate and com-
pare many such algorithms without further data collection.
We provide the data and calibration software to the public
(http://kobus.ca/research/data/). We develop and val-
idate methods for generating sensible evaluation data, cal-
ibrating for disparate evaluators, mapping image retrieval
system scores to the human evaluation results, and com-
paring retrieval systems. The experimental results show
how annotation and retrieval performance are linked as well
as comparison of the several existing image retrieval algo-
rithms.

In §3 we use word prediction performance to evaluate low
and mid level vision processes such as segmentation and fea-
ture extraction [6]. We do this in the framework of an image
understanding approach where the task is defined as predict-
ing words for either image as a whole (auto-annotation), or
specific image regions (recognition) [7, 17, 5]. In particular,
we propose using word prediction performance as a task ori-
ented evaluation measure for lower level algorithms. This
approach makes possible large scale experiments linked to
inferring semantics In this paper we provide representative



results for three different segmentation algorithms and sev-
eral feature sets.

In §4 we present a method for the evaluation of visual
properties of words [49]. Given our interest in large scale
scale linking of image data to semantic entities represented
by words from a very large vocabulary, a natural consider-
ation is the extent to which a word relates to visual prop-
erties at all. We propose “image region entropy” which is
a measure of “visualness” of concepts, that is, what extent
concepts have visual characteristics. If a word has limited
mutual information with image features that we can mea-
sure, then it is not a good candidate for image annotation.
Our method performs probabilistic region selection for im-
ages which are labeled as concept “X” or “non-X”, and com-
putes an entropy measure which represents “visualness” of
concepts associated with words. In our experiments, we col-
lected about forty thousand images from the World-Wide
Web using the Google Image Search for 150 concepts. We
examined which concepts are suitable for annotation of im-
age contents.

2. EVALUATION OF IMAGE RETRIEVAL
ALGORITHMS

The problem of automatically retrieving desired images
from a large, often unstructured data set has attracted much
attention in the research community [22, 44, 20, 41, 29, 10,
48, 15, 44, 31, 36]. The task is difficult and tightly con-
nected to computer vision because users are interested in
the semantics of the retrieved images [19, 18, 3, 32, 21].

These studies confirm that current image retrieval meth-
ods are well off the required mark. We argue that mov-
ing forward will require quantifying real performance, and
that the image retrieval community will be well served by
an appropriate evaluation process and reference data set.
Thus we have made our data and software available on-line
(http://kobus.ca/research/data/).

Automated image retrieval is only meaningful in its ser-
vice to human users, and thus performance must be grounded
in direct human evaluations. Our approach is to evaluate
query-result pairs for both query by image example and
query by text. By focusing only on the input and output,
such data is applicable to any image retrieval method.

Often evaluation of image retrieval is focused on results
obtained with a specific instance of a specific algorithm.
With this approach, changes to the algorithm require ad-
ditional human evaluation, which is expensive. More auto-
matic methods typically involve having sets of images tagged
with high level concepts (e.g., sky, grass ), and retrieval is
evaluated based on those labels [45, 46, 47], making per-
formance evaluation similar to that in text retrieval [39].
The Benchatholon project proposes providing much more
detailed and publicly available keywords of images using a
controlled vocabulary [23, 37, 1]. A problem with both these
approaches is that they are only indirectly connected to the
task that they are trying to measure. For example, there is
an implicit assumption that a person seeking an image like
one labeled grass will be content with all the images labeled
grass and none of the ones not labeled grass. While we do
not reject this hypothesis outright, image retrieval evalua-
tions need to be grounded on tasks closer to what end-users
do, hence this work. Our results can be used to calibrate
these less expensive measures.

2.1 Developing a reference data set
We set up human retrieval evaluation experiments to gather

grounded data for two tasks: query by image and query
by text paradigms. For the query by image paradigm we
present the user with one query image and four result im-
ages. The selection of the result images is discussed in detail
in the subsequent paragraph. The participant was asked to
score each of the four result images on a scale of 1 to 5, with 1
being a poor match and 5 being a good match. We provided
an additional choice of undecided (ignored) so that partici-
pants could move onto the next example without spending
too much time on ones they find hard to evaluate. Partici-
pants were given very little in the way of guidelines for mak-
ing their selection. For the second interface, we presented
the participant with a text query and a corresponding result
image. They rated the match by selecting a score from 1-9
or undecided.

Avoiding too many negative matches. The main
difficulty in setting up such an experiment is choosing query-
result pairs. If they were randomly generated then nearly
all the matches would be judged poor match. Ideally, we
would like roughly a uniform distribution of the responses of
the evaluations (excluding undecided where fewer is always
better).

The main idea is to use existing image retrieval systems
to help bias the selection process to get more uniform re-
sponses. Doing so may put us at risk for introducing un-
wanted biases in the test set due to some poorly charac-
terized property of the retrieval system. While we do not
expect significant problems, we guard against this by us-
ing four very different image retrieval processes. Each one
is used for the selection of one of the four result images,
randomly permuted for each query.

The second issue is how to use the retrieval systems to
improve the sampling. Initially, we know very little about
the relationship between retrieval results and human evalua-
tion results. However, trial and error revealed that choosing
images with probability proportional to the negative fifth
power of the rank gave a serviceable starting point. This
can be improved once some data has been collected, as our
approach revolves around estimating the mapping from com-
puter scores to human scores. In §2.4.2 we present results
which suggests that this iterative process is helpful.

It is critical to understand that the query-result pairs are
evaluated completely independently of the retrieval systems
used to help select the images. Ideally, the only effect of the
selection process is that the responses are more uniformly
distributed. Using four different systems allows us to ad-
dress the whether the process introduces significant bias into
the measurement of retrieval systems (§2.4.3).

Evaluation experimental protocol. We asked many
people to evaluate query-result pairs. This achieves two
goals. First, we are interested in the range of results due to
human subjectivity. Second, we wanted to collect as much
data as possible. We collected data for two experiments two
paradigms: query by image and query by text. In this paper
we focus on query by image.

Due to practical considerations, roughly half of the data
was produced by a single person. In total, 20,000 query-
result pairs were evaluated for query by image example and
5,000 pairs were evaluated for query by text example. The
evaluation was performed by 32 participants, out of which
3 participants evaluated both the paradigms. The data do-



main of this work is 16,000 images from the Corel data set.
Calibrating for participant variance. We used the

data from the common sets to reduce the biases due to the
different participants. To do so, we mapped the results of
each participant in a given experiment by a single linear
transformation so that their mean and variance of their re-
sults on the common set was the global mean and variance
on this set. The effect of this is studied in §2.4.1.

2.2 Image retrieval systems
Keyword retrieval. The Corel image keywords can be

used as a pseudo query by example method. Here, we score
the match of two images by:

score =
| WQ ∩ WR |

min(| WQ |, | WR |) (1)

where WQ is the set of words associated with the query, WR

is and the set of words associated with the retrieved image,
and | X | is the number of elements in a set X. We denote
this retrieval method as “Keywords”.

Region based multi-modal mixture models. Recent
work proposes modeling image data as being generated by
hidden factors which are responsible for jointly generating
image region features and associated text [7, 4, 17, 5]. Here
we model the joint probability of a particular blob, b, and a
word w, as

P (w, b) =
X

l

P (w|l)P (b|l)P (l) (2)

where l indexes over the concepts, P (l) is the concept prior,
P (w|l) is a frequency table, and P (b|l) is a Gaussian distri-
bution (diagonal covariance) over features.

To train such models, we represent the node responsi-
ble for each image word and region by missing values, and
use Expectation-Maximization to iteratively estimate the
model parameters and the expectations for the missing val-
ues. However, in our case, where the correspondence be-
tween words and image regions is not known, there are addi-
tional choices and complexities. In particular, we must make
choices how word likelihood from regions becomes word like-
lihood for the image which is what can be observed [5].

To implement image retrieval, we compute the probability
that the model parameters for a database document can
generate the observed regions of the query document.

The model can be trained with both image region fea-
tures and words (labeled “RWMM”), or using regions only
(“ROMM”). For image retrieval, we only use the image fea-
ture part of the model. Thus, if words are used at all, it is
only during training. We further consider two retrieval sce-
narios. The first assumes complete access to all data, and
thus we are able to match images in our training set. While
in most situations using the training set model is not inter-
esting, in the retrieval context it can make sense. In this
case we affix the suffix “ALL” to the method label.

The second scenario uses the model as a template for
matching new images. Neither the query image, nor the
result image is part of the training set. Here we affix the suf-
fix “TEST” to the method label. In particular, the method
RWMM-TEST seems like an interesting retrieval paradigm.
The words help ensure that the model encodes some re-
lationship between image features and semantics, but the
model is applicable to matching images without keywords
and that have not been seen by the training system — of

course, regions with the appropriate semantics must be in
the training data.

The variant used for image selection in the query-by-example
experiment, “ROMM-CALIB” is an older version of the sys-
tem which was trained without words on subsets of the en-
tire image data set. The results were then concatenated.
Image selection for the query-by-text case used the analo-
gous method, but text was included (“RWMM-CALIB”).

GIFT [2] is an open framework for content-based image
retrieval. In its standard implementation, it is a pixel based
CBIR system based on both local and global color and tex-
ture histograms. We use the standard system as one of the
four systems used for improving the uniformity of the hu-
man evaluation results. In the retrieval method compari-
son (§2.4.2) we evaluate the effect of limiting the GIFT to
use only color (“GIFT-color”), and only texture (“GIFT-
texture”).

SIMPLIcity [48] is a region-based CBIR system which
combines semantic classification methods, a wavelet based
approach for feature extraction, and an integrated region
matching based on image segmentation.

2.3 Mapping retrieval algorithm scores to hu-
man evaluation scores

The ground-truth data is composed of human scores corre-
sponding to pairs of query-result images from the evaluation
data set. We want to use this data to provide a mapping
which takes the image retrieval scores into human evaluation
scores for each system. Such mappings will put all systems
onto the same scale, namely human evaluation scores. They
also render retrieval scores as absolute scores which is use-
ful for negotiating with users regarding the quality of the
images to be returned (e.g. “good match” versus top 10).

We tried three kinds of mapping methods as follows:

(a) Monotonic mapping minimizing squared error
In this method we map the computer scores to the human
evaluation scores such that the average sum of the Euclidean
distance between the mapped scores and the human scores
is minimized, subject to mapped scores being monotonic.
If X is a vector of computer scores arranged in ascending
order and Y be a vector of corresponding human scores. If
the mapped scores are represented by Ỹ, then the objective
function to be minimized is:

E =

N
X

i=1

(ỹi − yi)
2 (3)

subject to the constraint that Ỹ is monotonic.
The preceding problem was solved using the MATLAB c©

routine quadprog. Since the number of constraints is large,
we adopt bootstrapping [13] to average over the samples and
find the estimate of Y that minimizes Eq. 3 subject to the
constraint that Ỹ is monotonic.

(b) Monotonic mapping maximizing correlation
Since we propose to use the correlation between the hu-

man scores and the computer scores as a measure of perfor-
mance, it seems logical to obtain a mapping function that
maximizes the correlation. Hence, the second fitting method
performs the mapping such that the correlation coefficient
between the mapped scores and human scores is maximized,
subject to the mapped scores being monotonic. The task is



to maximize:

C =

N
X

i=1

(yi − µ)(ỹi − µ̃)

σσ̃
(4)

where µ and µ̃ are the mean for the original and mapped
data respectively and similarly σ and σ̃ are the variances.

We would expect the correspondence obtained in this method
to be higher than that obtained with the previous method
and Table 2 confirms this for a majority of the data. The
reader is forewarned that the method employed to carry out
the optimization is guaranteed to give only a local minima.

Non-linear programming tools available with MATLAB
solve Eq.4. Specifically a routine fmincon is used which is
based on Newton’s method for large scale nonlinear mini-
mization [13],[12]. We again use bootstrapping to get a gen-
eralization on the error and also obtain a vector of mapped
scores that corresponds to the human scores.

(c) Monotonic Bayesian curve fitting
Since fmincon does not guarantee a global maxima/minima

and we may be overfitting with the previous approach, we
adopt a sampling method [24, 26] as the third method, which
employs Markov Chain Monte-Carlo (MCMC) simulation to
obtain the parameters of a model that maximize the poste-
rior. Monotonicity is constrained during the sampling. This
approach runs fine on our entire data set, and often gives us
the best mapping function (§2.4.3).

This is a generalized monotonic curve fitting approach
that is based on the Bayesian analysis of the isotonic regres-
sion model. Isotonic regression schemes [38], [40] fit mono-
tonically increasing step functions to data. This model uses
the concept of change-points to fit cubic ogives.

A function f(x), x ∈ [a, b] ⊆ < is said to be an ogive in the
interval [a,b] if it is monotone increasing and there is a point
of inflection x∗ such that f(x) is convex up to x∗ and concave
thereafter. The model is assumed to be continuous piecewise
and differentiable between the knots (change-points). These
assumptions lead to the characteristics of the model that
is piecewise linear between the knots. Starting from first
principles [38] the cubic ogive function is derived to be:

f(x) = δ + γ(x− t0) + β(x− t0)
2 +

1

6

k+1
X

i=1

βi(x− ti−1)
3 (5)

where the t0 is the inflection point and δ, γ, β are model
parameters.

The method is briefly outlined. The data is assumed to
be normally (Gaussian) generated around change points or
knots whose position and number are random. The dimen-
sionality of the model is related to the number of change
points accommodated in the model. Hence, this forms the
space of varying multi-dimensional mixture models (because
the space is now a mixture of varying multi-dimensional pa-
rameter vectors). Around each knot the authors adopt a
prior to generating the data. If (yi, xi), i = 1, ..., N , denote
N data pairs of corresponding human scores and computer
scores respectively, such that the xi are ordered in an as-
cending order, then if the ordered set of M change points is

denoted by
−→
t = t1, t2, ...., tM−1, this forms M disjoint sets.

The conjugate priors are assumed on the yi’s. The data gen-
erative model assumes identically independent distributions
from each of the disjoint sets B, hence the probability of

generating data within a set i is:

yi = N(yi|µj , Ψ) (6)

where µj is the mean-level in the jth set and Ψ is the global
variance term. The likelihood of data being generated by
the model parameters in a set j is given by:

P (Yj |M, t, Ψ, µj) = Π
nj

i=1f(yi|µj , Ψ) (7)

The likelihood of the complete data Y given the model is
just the product of the likelihoods within sets. Hence the
complete likelihood is:

P (Yj |M,
−→
t , Ψ, µ) = ΠM

j=1Π
nj

i=1f(yij |µj , Ψ) (8)

Combining the likelihood and the priors the posterior is es-
tablished. Since its computation requires the integration
over varying model space which is not an easy task a sim-
pler solution of MCMC approach is suggested. The MCMC
sampler draws samples from the unconstrained model space
and retains only those samples for which the monotonic con-
straint holds. The working of the MCMC simulation is a
variant of the Metropolis-Hastings algorithm [25, 35] and is
explained briefly below:

1. The chain is started from the simplest model with just
one change point with a global mean level and variance
drawn from the prior.

2. Changes are then adopted in the model, which may
be one of these adding a new change point, or delet-
ing an existing change point or by altering a change
point in the model. These changes are accepted with
probability Q:

Q = min(1,
p(M ′|Y )S(M |M ′)

p(M |Y )S(M ′|M)
) (9)

where M represents all the model parameters in the
current model and M’ denotes the model with changes
and S is the proposal distribution which is set to be a
Gaussian. As the model is changed, the µ’s and Ψ’s
change accordingly in the next iteration of the MCMC.

3. If u ∼ U(0, 1) < Q then M(t+1) = M ′, else M(t+1) =
M .

4. The constraint µ1 ≤ µ2 ≤ ....... ≤ µM−1 is applied to
the samples and only those samples, which obey the
constraint, are retained.

5. For any point x in X the distribution y is an average
of the distribution of y for each of the models given x
and the model parameters.

The model we have used is from the biostatistics [25] lit-
erature. This model fits cubic curves between the random
points. This information is encoded in the model parame-
ters M . A more detailed treatment to this subject is given
in [25, 35].

2.4 Experiments

2.4.1 Variance across evaluators
Table 1 shows the average variance of the results for the

common test set for each of paradigms with and without
the normalization described in (§2.1). The results show that
there is variability in the participants that is worth calibrat-
ing for. Thus we apply the transformation computed on the
common set to adjust all the results from that participant.



Table 1: The effect of adjusting on human evaluation
scores to reduce differences among participants. The
table shows the average standard deviation for stan-
dardized scores (global mean 0 and variance 1) for the
three experiments before and after adjustment using the
method described in the text (§2.1). This adjustment
significantly reduces the variance.

Interface Query by Query by text

1-5 Binary 1-9
Number of 24 6 5
participants
Average variance with
standardized scores 1.38 0.19 2.88
Average variance with
person dependent adjustment 1.15 0.036 0.937

2.4.2 Updating evaluation pair choice based on mea-
sured mapping functions

As described in §2.1, once we have a reasonable amount
of evaluation data, we can use the retrieval system specific
mapping functions (§2.3) to further improve the generation
of query-result pairs for subsequent data collection. Recall
that our goal is to have a roughly uniform response over our
evaluation responses. A simple measure of this for 5 cat-
egories is 1

5

P5
i=1 ‖f(i) − 0.20)‖, where f(i) is the fraction

of responses for category i. We computed this measure for
the responses from the sampling based on the initial pro-
posal (negative fifth power of rank), and the responses from
subsequent data based on the mapping functions computed
from the first part. The results in Table 2 show that the
second data set induced more uniform responses.

Table 2: Deviation from uniformity of human evalu-
ation results for the four calibration retrieval systems:
(1) GIFT; (2) SIMPLIcity; (3) ROMM-CALIB; and (4)
Keywords.

1 2 3 4
initial data 0.20 0.19 0.14 0.08

mapped data 0.15 0.14 0.12 0.05

2.4.3 Mapping CBIR system scores to human evalu-
ation results

Table 3 provides the correlations between the mapped
score and the adjusted human score for all three fitting meth-
ods. In order to investigate sources of bias, we computed re-
sults for each of the four calibration system evaluated using
only the images selected by each of the four. We found no
significant consistent trend that using the same algorithm
for selection and testing is an advantage to that algorithm.
For example, if we used the maximum of each of the three
fitting methods, and allow each algorithm to be paired with
its own selection results, then the rank order does not change
compared to using the mean, or the value from all data.

In general, we find that the Bayesian fitting method gave
consistently good results. The constrained correlation max-
imization method also gave serviceable results. In contrast,
least squares fitting did not work very well, which is per-
haps not surprising given that we settled for correlation as
our main measure of interest.

2.4.4 Comparing image retrieval algorithms
To compare image retrieval algorithms we first find a good

mapping of the scores of that algorithm on the evaluation
set to the adjusted human scores as described above. We

then compute the correlation of the mapped scores to the
human scores. The results are in Table 4.

Table 4: Grounded comparison of content based re-
trieval methods. We report the correlation of mapped
computer scores with human scores. Each method uses
its own, most favorable, monotonic mapping.

Correlation of the calibrated human
to the mapped system scores

ROMM-ALL 0.24
ROMM-TEST 0.17
RWMM-ALL 0.35

RWMM-TEST 0.23
GIFT 0.17

GIFT-color 0.15
GIFT-texture 0.07
SIMPLIcity 0.19
Keywords 0.51

Estimated precision recall curves. We consider the
correlation results to be the best single indicator of per-
formance under our methodology. However, we can use our
results to estimate other performance characterizations such
as Typically one plots the average values of precision versus
recall over a threshold modulating the number of images
returned. We emphasize that the form of our data is dif-
ferent than the form suggested by the formulas, and thus
producing estimated PR curves requires care. We have a
large number of query-result pairs which, by design, are a
non-uniform sampling of the space of such pairs. Since we
have many such pairs we can weight our averages to correct
for the sampling. To compute the curves we essentially treat
the top M CBIR responses as a single query for which we
can compute the three quantities in the above two formulas.
However, in order to estimate the ratios in the case of uni-
form sampling, which, in turn, estimates the ratios if we had
all the data, we weight the computation of the quantities in
(3) and (4) by the reciprocal of the sampling function. The
estimated PR curves are in Figure 2.4.4.
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Figure 1: Precision recall curves for a number image
retrieval methods. A relevant retrieved image corre-
sponds to an adjusted human evaluation score greater
than 3. Because the evaluation set is biased towards
good matches, we have to estimate the PR curves by
reversing the bias in rank. See text for details.

Our results show, not surprisingly, that keyword retrieval
outshines the image based methods. This simply reflects the



Table 3: The correlation between the mapped scores and the human evaluation scores. The tabulated values are the
correlation measures for each of the four calibration systems, as computed based on the samples provided from each
of the four systems, the average of those results, and based on all the data combined. The systems are: 1) GIFT; 2)
SIMPLIcity; 3) ROMM-CALIB; and 4) Keywords.

Fitting Average correlation between human
methods scores and mapped GIFT scores

on data selected by different systems
1 2 3 4 Mean All

a 0.18 0.10 0.13 0.10 0.13(0.04) 0.10
b 0.13 0.16 0.26 0.23 0.20(0.03) 0.17
c 0.13 0.18 0.22 0.21 0.19(0.04) 0.10

Fitting Average correlation between human
methods scores and mapped SIMPLIcity scores

on data selected by different systems
1 2 3 4 Mean All

a 0.13 0.20 0.14 0.20 0.17(0.04) 0.18
b 0.19 0.23 0.24 0.31 0.24(0.05) 0.18
c 0.17 0.25 0.23 0.25 0.23(0.04) 0.19

Fitting Average correlation between human
methods scores and mapped ROMM scores

on data selected by different systems
1 2 3 4 Mean All

a 0.17 0.18 0.18 0.20 0.18(0.01) 0.21
b 0.22 0.26 0.29 0.37 0.29(0.06) 0.23
c 0.31 0.33 0.43 0.34 0.35(0.05) 0.24

Fitting Average correlation between human
methods scores and mapped Keywords scores

on data selected by different systems
1 2 3 4 Mean All

a 0.17 0.28 0.51 0.41 0.34(0.14) 0.27
b 0.25 0.32 0.61 0.57 0.44(0.17) 0.38
c 0.53 0.58 0.62 0.56 0.57(0.04) 0.51

fact that semantics play a dominant role in what users con-
sider a match, and that we are not very good at determining
image semantics from features. The results also corroborate
the notion that annotation oriented evaluation can serve as
a proxy for grounded evaluation. However, the results also
suggest that the scope of such a proxy is limited. Since the
keyword results were far from perfect, a significant portion
of what our participants expressed through their choices is
not captured, and thus not measurable, using the keyword
proxy.

Using words in training helps capture some relation be-
tween semantics and features, and the methods RWMM-
ALL and RWMM-TEST do relatively well as a result. With-
out words, but still encoding the entire training set, the per-
formance drops but is still respectable. We see this method
(ROMM-ALL) to be a alternative method to SIMPLIcity
in that it reports a match over several image regions. How-
ever, while ROMM-ALL models the statistics of the data set,
SIMPLIcity computes the matches on the fly. We found that
ROMM-ALL performs a bit better than SIMPLIcity. When
forced to model images in general, but not in the training
set, the the mixture model approach becomes a simple fea-
ture match method, and the performance results reflect this
(worse than SIMPLIcity, same as GIFT).

2.4.5 Effect of half of the ground truth developed by
one person

In an experiment not reported elsewhere, we examined our
data for possible bias due to the fact that one person (code-
named “Master”) was responsible for 50% of the ground-
truth data. We thus segregated the evaluations into that of
the master, and that of the other 31 participants. Table 5
shows the correlation scores along with the standard error
for the retrieval systems discussed in §2.2 on data obtained
from one person, the rest and the combined data. The cor-
relation scores on data from three sources are within the
standard errors of each other suggesting that there does not
appear to be a bias in the ground truth data.

3. WORD PREDICTION PERFORMANCE
FOR LARGE SCALE EVALUATION

Our second approach for measuring how well a system
captures semantics is based on a processes which translate
from images (visual representation) to words (semantics). In
particular, we present work using this approach to evaluate

Table 5: Correlation scores of image retrieval sys-
tems on data obtained from the evaluations of Mas-
ter , Others and the Combined data.

Systems Master Others Combined
ROMM-ALL 0.21 (0.03) 0.19 (0.04) 0.24 (0.01)

ROMM-TEST 0.20 (0.03) 0.19 (0.02) 0.17 (0.02)
RWMM-ALL 0.24 (0.03) 0.25 (0.03) 0.35 (0.03)

RWMM-TEST 0.23 (0.04) 0.22(0.03) 0.23 (0.03)
GIFT 0.17 (0.02) 0.20 (0.03) 0.17 (0.01)

SIMPLICITY 0.16 (0.03) 0.21 (0.02) 0.19 (0.01)
KEYWORDS 0.57 (0.04) 0.50 (0.05) 0.51 (0.02)

potential of low and mid level computer vision algorithms
to support inferring semantics from visual data. Translation
performance can be measured on a large scale, by compar-
ing a proxy measure for the proposed translation (predicted
words) with the observed, associated text. Any of a num-
ber of recently developed approaches for image annotation
could be used in this paradigm (e.g. [7, 17, 5, 27, 30, 28,
9]). For the results reported here, we use the region based
multi-modal mixture model described above.

It is widely agreed that segmentation measures should be
task oriented (see [8] for related work). We argue that word
prediction is an excellent task because it is associated with
higher level image semantics and recognition. An interesting
orthogonal approach is to link segmentation performance to
those provided by human subjects [34, 33]

3.1 Predicting words from images
Given an image region, its features imply a probability

of being generated from each node according to the multi-
modal mixture model. For the results that follow we use 500
mixture components. These probabilities are then used to
weight the nodes for word emission. Thus words are emit-
ted conditioned on image regions. In order to emit words
for an entire image (auto-annotation), we simply sum the
distributions for the N largest regions. Thus each region is
given equal weight, and the image words are forced to be
generated through region labeling.

3.2 Experimental Protocol
We used images from 160 CD’s from the Corel image data

set. Each CD has 100 images on one relatively specific topic
such as “aircraft”. From the 160 CD’s we drew samples of
80 CD’s, and these sets were further divided up into training
(75%) and test (25%) sets. The images from the remaining



CD’s formed a more difficult “novel” held out set. Predicting
words for these images is difficult, as we can only reasonably
expect success on quite generic regions such as “sky” and
“water” — everything else is noise.

Each such sample was given to each process under con-
sideration, and evaluated on the basis of at least 1000 im-
ages. The results of 10 such samples were further averaged.
This controls for both the input data and EM initialization.
Words occurring less than 20 times in the training set were
excluded. The number of words in the vocabulary varied
from 153 to 174 over the 10 runs.

For the segmentation evaluation and segment merging ex-
periments we used a modest selection of features for each
segment, including size, position, color, oriented energy (12
filters), differential response of 2 different Gaussian filters, a
few simple shape features. For the feature evaluation exper-
iments images were segmented using Normalized Cuts [42].

Performance measures. To quantify word prediction
we allow the model to predict M words, where M is the
number of words available for the given test image. In our
data M varies from 1 to 5. The number correct divided by
M is the score.

In all results reported for segmentation, feature choice,
and region merging, we express word prediction relative to
that for the empirical word distribution — i.e., the frequency
table for the words in the training set. This reduces variance
due to varied test sample difficulty. Exceeding the empirical
density performance is required to demonstrate non-trivial
learning. Doing substantially better than this on the Corel
data is difficult. The annotators typically provide several
common words (e.g. “sky”, “water”, “people”), and fewer
less common words (e.g. “tiger”). This means that anno-
tating all images with, say, “sky”, “water”, and “people” is
quite a successful strategy. Performance using the empirical
word frequency would be reduced if the empirical density
was flatter. Thus for this data set, the increment of perfor-
mance over the empirical density is a sensible indicator.

3.3 Semantic based segmentation evaluation
We evaluate six variants from three classes of segmen-

tation methods: the expectation-maximization segmenter
used for Blobworld [11], Normalized Cuts [42], and the mean
shift algorithm [14]. The implementation of Normalized
Cuts available to us provides both over-segmented initial
output (“preseg”) as well as the finished results (“ncuts”).
Similarly, the mean shift implementation, kindly made avail-
able on-line, gives three options (over segmentation, under
segmentation, and quantization).

A possible confound in our process is the number of seg-
ments used for word prediction and thus in Figure 3.3 we
plot performance as a function of using the largest 2, 4, 6,
8, 10, and 12 regions. The large scale of our experiments-
results for 10,000 images are used for each data point-means
we can estimate errors for each plotted value (indicated by
error bars).

We find that ncuts provides distinctly better support (well
outside of error) for word prediction compared with the
Blobworld EM segmenter. The mean-shift algorithm is some-
where between the two, again significant given the error es-
timates in the case of the first held out set. For the novel
images, the order remains the same but there is more vari-
ance. Interestingly, preseg seems to be comparable to ncuts,
provided that we increase the number of segments to 20 (not

Table 6: Word prediction performance for a variety
of feature sets. More features is certainly not better,
likely due to over-training and noise. Color is the
best single cue, followed by texture.

Feature set Word prediction performance
Training Held-out Novel

Base set 0.019 0.020 0.018
Base set, RGB 0.076 0.057 0.044
Base set, L*a*b 0.097 0.085 0.061
Base set, rgS 0.109 0.092 0.065

Base, rgS, color context 0.134 0.094 0.055
Base set, texture 0.079 0.048 0.041
Base, rgS, texture 0.109 0.072 0.059
Base set, shape 0.053 0.016 0.017

Base set, rgS, shape 0.065 0.029 0.027
Base,rgS, texture, shape 0.083 0.043 0.038

Everything 0.097 0.055 0.039

plotted). Additional experiments are needed before we can
say whether there is a real difference.

3.4 Semantic based feature evaluation
We apply a similar strategy to evaluating features. Here

we keep the segmenter and the number of regions fixed (nor-
malized cuts, 8 regions), and investigate word prediction
performance as a function of features. In addition to the
feature sets used in previous work, we experiment with sev-
eral others, including a more comprehensive shape descrip-
tor and color context as described below. Since it is imprac-
tical to evaluate all combinations of features we break them
into groups. We consider a “base” set of features which con-
sists of region size, location, and two simple shape features,
namely the first moment of the region, and the area divided
by the square of the outer boundary length.

We consider adding color as encoded in three different
ways-straight RGB, L*a*b, and chromaticity with bright-
ness, specifically, S=R+G+B, r=R/S, and g=G/S. In all
case both the average color and its variance over the region
is used. Thus color adds 6 numbers to our feature vector.
Texture is represented by a combination of the average en-
ergy response to 12 filters with different orientations, and
the average response to the difference of 4 different combi-
nations of 2 Gaussian filters.

Our base features include minimal shape information. It
is not clear whether our segmentations of thumbnail sized
images contains usable shape information. We considered
only the outer boundary of the each region, normalized for
the length of the boundary, and parameterized the distance
from the center of mass by arc-length.

By color context we mean the average color adjacent to
regions in various directions. It is intuitively reasonable as
a feature to try for improved word prediction. For example,
a brown blob is more likely to be a bird, and less likely to
be dirt, if it is surrounded by light blue. To compute color
context we start by computing the average distance of the
outer boundary of a region from its center mass. Then we
consider all points within twice this distance in 4 quadrants
aligned at 45 degrees to the image axis. For each of the
four wedges (top, bottom, left, right), we average the colors
in the wedge but not in the region, provided that there are
more than 100 such points. Otherwise the average color of
the region itself is used. This gives 12 numbers for each
region.

In Table 6 we give word prediction performance for a num-
ber of combinations of features. Not surprisingly given the



Figure 2: Segmentation methods compared using word prediction performance, evaluated on held out date (left),
and novel data (right). All values plotted are positive, which means that performance always exceeds that using the
empirical distribution.

nature of the Corel data, color is most useful. Interestingly,
color space makes a significant difference. Chromaticity plus
brightness does the best, and both it and L*a*b do signifi-
cantly better than RGB. This ranking suggests that correla-
tion among the color components is a likely source of trou-
ble (recall that we treat features as independent). This also
suggests that steps should be taken to reduce the correlation
among other features. Color context helps, but not as much
as we hoped. Color context was conveniently computed in
terms of RGB. The above finding on the effect of color space
suggests that we should test color context expressed in the
chromaticity plus brightness space.

Texture also carries some usable information — using it
with only the base set gives significant improvement, but
when used in conjunction with color the increment is not
that large. This may be due to the fact that the variance
we include with color carries some texture information.

Utilizing shape proved to be problematic. It is clear from
the results on the training data that our shape feature car-
ries usable information but the results on the held out data
reveal that what was captured does not generalize well.

4. EVALUATION OF WORDS FOR IMAGE
ANNOTATION

Not all words are appropriate for image annotation, since
some words are not related to visual properties of images rel-
ative to our features. We summarize a method to measure
the “visualness” of concepts using Web images; that is, to
what extent concepts have visual characteristics. Knowing
which concept has visually discriminative power is impor-
tant for automatic image annotation, since not all concepts
are related to visual contents. Such systems should first
consider the concepts which have visual properties.

So far, most of the work related to image annotation or
image classification has either ignored the suitability of the
vocabulary, or selected concepts and words by hand. The
popularity of sunset images in this domain reflects such
choices, often made implicitly. We propose that increas-
ing the scale of the endeavor will be substantively helped
with automated methods for selecting a vocabulary which
has visual correlates.

As an example of how this can be helpful, we are currently
studying how to incorporate adjectives into image annota-
tion models mentioned above. Adjectives bound to nouns
have great potential to reduce correspondence ambiguity.
For example, if a training image is labeled as “red ball”,
and “red” is known, but “ball” is not, the “red” item in the
image will be weighted more heavily as a theory on what the
“ball” is. However, although there are many adjectives, not
all of adjectives are appropriate to use for image annotation
task. Some adjectives have only a little or no relations to vi-
sual properties presented in images. For example, adjectives
related to color such as “blue” and “green” are apparently
good for annotation, while “hard” and “soft” are not likely
adequate since it seems to be difficult to be distinguished
from only visual properties. A measure of “visualness” of
concepts can help select adjectives we should use.

Our method performs probabilistic region selection for
regions that can be linked with concept “X” from images
which are labeled as “X” or “non-X”, and then we compute
a measure of the entropy of the selected regions based on a
Gaussian mixture model for regions. Intuitively, if such an
entropy is low, then the concept in question can be linked
with region features. Alternatively, if the entropy is more
like that of random regions, then the concept has some other
meaning which is not captured by our features.

4.1 Method to Compute the Image Entropy
To compute the “image region entropy” associated to a

certain concept, we begin by gathering images related to
the concept. While it is difficult to manually collect large
numbers of images related to one concept, we can gather
images likely associated to a certain concept using Web im-
age search engines such as Google Image Search and Ditto.
Of course, raw results from the Web image search engines,
usually include irrelevant images. Moreover, the images usu-
ally include backgrounds as well as objects associated with a
concept. Therefore, we need to eliminate irrelevant images
and pick up only the regions strongly associated with the
concept in order to calculate the image entropy correctly.
We use only the regions expected to be highly related to the
concepts to compute the image entropy. To select regions



associated with concepts, we use a probabilistic method.
To find regions related to a certain concept we use an

iterative algorithm. Initially, we do not know which region
is associated with a concept “X”, since an image with an “X”
label just means the image contain “X” regions. In fact, with
the images gathered from the Web, even an image with an
“X” label sometimes contain no “X” regions at all. So at first
we have to find regions which are likely associated with “X”.
To find “X” regions, we also need a model for “X” regions.
Here we adopt a probabilistic generative model, namely a
mixture of Gaussian, fitted using the EM algorithm.

In short, we need to know a model for “X” and which
regions are associated with “X” simultaneously. However,
each one depends on each other, so we proceed iteratively.
Once we know which regions corresponds to “X”, we can
compute the entropy of “X” regions relative to a different
mixture of Gaussian, this one being a generic one fitted using
the regions for a large number of images.

We segmented the images gathered from the Web as “X”
images using JSEG [16]. After segmentation, we extract
image features from each region whose size is larger than
a certain threshold. As image features, we prepare three
kinds of features: color, texture and shape features, which
include the average RGB value and its variance, the average
response to the difference of 4 different combination of 2
Gaussian filters, region size, location, the first moment and
the area divided by the square of the outer boundary length.

We then prepared a generic Gaussian mixture model (GMM)
for all image regions. This provides a base for computing
the entropy. For this model we used about fifty thousand
regions randomly picked up from the images gathered from
the Web. We fit the GMM using Expectation Maximization
(EM). As EM always includes randomness in the initial set-
ting, we prepared k different generic models, and used the
average of the entropies over these (here k = 5).

We estimate the entropy of the image features of all the
regions weighted by P (X|xi) with respect to the generic
model. The average probability of image features of “X”
weighted by P (X|xi) with respect to the j-th component of
the l-th generic base represented by the GMM is given by

P (X|cj , l) =
wj,l

PNX
i=1 P (fX,i; θj,l)P (X|ri)

PNX
i=1 P (X|ri)

(10)

where fX,i is the image feature of the i-th region of “X”,
P (fX,i; θj,l) is the generative probability of fX,i from the
j-th component, NX is the number of all the regions which
come from “X” images.

The entropy for “X” is given by

E(X) =
1

k

k
X

l=1

Nbase
X

j=1

−P (X|cj , l) log2 P (X|cj , l) (11)

where Nbase is the number of the components of the base
(here N = 250).

4.2 Experiments
As test images associated with concepts, we used the im-

ages gathered from the World Wide Web by providing 150
adjectives for Google Image Search. We obtained about 250
Web images for each adjective. Totally we obtained about
forty thousand images associated with adjectives.

Table 7 shows the 10 top adjectives and their image en-
tropy. The entropy of “dark” is the lowest, so in this sense

“dark” is the most “visual” adjective among the 150 adjec-
tives we used in this experiment.

We show the ranking of adjectives related color in the
lower part of Table 7. They are generally ranked in the up-
per ranking, although images from the Web included many
irrelevant images. This shows the effectiveness of the method.

Table 8 shows the 10 bottom adjectives. In case of “reli-
gious”, which is ranked in the 145-th, the computed entropy
was relatively large, since the image features of the regions
included in “religious” images have no prominent tendency.

In fact, this result is not always consistent with our in-
tuition, since region selection did not work well for some
adjectives. As future work, to compute more precise “image
region entropy”, we will improve the method, especially the
probabilistic region selection method.

Table 7: Entropy ranking.
rank adjective. entropy

1 dark 0.0118
2 senior 0.0166
3 beautiful 0.0178
4 visual 0.0222
5 rusted 0.0254
6 musical 0.0321
7 purple 0.0412
8 black 0.0443
9 ancient 0.0593

10 cute 0.0607
(color adjectives)

7 purple 0.0412
8 black 0.0443

36 red 0.9762
39 blue 1.1289
46 yellow 1.2827

Table 8: Entropy rank-
ing.
rank adjective. entropy

141 elderly 2.5677
142 angry 2.5942
143 sexy 2.6015
144 open 2.6122
145 religious 2.7242
146 dry 2.8531
147 male 2.8835
148 patriotic 3.0840
149 vintage 3.1296
150 mature 3.2265

5. SUMMARY
Building retrieval systems which effectively provide the

user with semantic access to large data sets will require much
additional research effort. We posit that research into the
effective evaluation in a semantic context is a necessary com-
ponent of this effort. In this paper we have described three
contributions to this effort. First, we provide a method for
evaluating image retrieval. Second, we argue that automatic
image annotation is an excellent way to approach the large
scale evaluation of low and mid level algorithms which sup-
port inference of image semantics. Finally, we provide a
measure for estimating the potential that a word is suffi-
ciently visual to be included for image annotation and im-
plicit indexing based on image characteristics.
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