

Multi-Style Transfer Generative Adversarial Network for Text Images

Honghui Yuan and Keiji Yanai

Department of Informatics, The University of Electro-Communications, Tokyo, Japan {yuan-h, yanai}@mm.inf.uec.ac.jp

国立大学法人電気通信大学

Introduction

- Neural style transfer have shown impressive results in deep learning.
- Recent researches have successfully completed the transition from the text font domain. to the text style domain.

Image Style Transfer Using Convolutional Neural Networks [Gatys, CVPR 2016]

Controllable Artistic Text Style Transfer via Shape-Matching GAN [Yang, CVPR2019]

Introduction

• However, for text style transfer, multiple style transfer often requires learning many models.

• Generating multiple styles images of texts in a single model remains an unsolved problem.

Introduction

• We propose a multiple style transformation network, which can generate multiple styles of text images in a single model and control the style of texts in a simple way.

Related work 1. Style Transfer

 The existing researches (Neural image style transfer,AdaIN) related to style transformation of images have made very significant progress.

Related work **2.Image-to-image translation**

- SPADE [7] allows users to create an actual composite image from a simple image drawn by the user.
- Proposes a new normalization layer Spatially-Adaptive Normalization.

cited from SPADE[Park et al., CVPR2019]

Related work

• SEAN [18] made improvements for SPADE [7]. Individual control of each region of a semantic segmentation image was achieved.

cited from SEAN[Zhu, CVPR 2020]

© 2021 UEC Tokyo.

Related work 3. Text font style transfer

 Can transform text styles by learning one style image and can control different degrees of style.

cited from Shape-Matching GAN [Yang, CVPR2019]

© 2021 UEC Tokyo.

Shape-Matching GAN

- Base method Shape-Matching GAN.
- Stage 1:sketch module is used to change the style images into different degrees of deformation through the parameter I.

Stage I: Input Preprocessing (Backward Structure Transfer)

>from Controllable Artistic Text Style Transfer via Shape-Matching GAN [Yang, CVPR2019]

Shape-Matching GAN

- Base method Shape-Matching GAN.
- Stage 2: there are two main parts, structure module (GS,DS) and texture module (GT,DT).

Stage II: Forward Style (Structure and Texture) Transfer

Shape-Matching GAN

• Network requires only one style image for text style transformation.

 Shape-Matching GAN works well when learning just one style, but it does not work when learning multiple styles.

multiple styles of text can not be generated
with only one model.

Proposed method

 we propose a multiple style transformation network for text style transfer based on Shape matchingGAN.

- our main idea:
 - 1.add conditions.
 - 2.optimize the network.

Proposed method

• The red line shows the network structure that we have changed for Shape-MatchingGAN.

Conditional input

Conditional input

• Input into the network in pairs with the style images.

Multi-style training

• SPADE layer can effectively prevent the information about mask images from being washed out in the network.

Multi-style training

Multi-style training

• The mask of the four kinds of the style images is used as input for SPADE ResBlk.

Improving the quality of the generated images

Add a discriminator to make the quality of the generated images better.

Improving the quality of the generated images

• Add a PatchGAN discriminator to our texture network.

Dataset

• Dataset: 129 text images, 4 style images and corresponding mask images.

Example of text image

Style image and mask image

Network training

 Training process: input the style images and the corresponding mask images into the network in pairs.

 Testing stage: input the selected text image and style mask image to generate the corresponding style text image.

Results of the experiments

© 2021 UEC Tokyo.

4

Results of the experiments

© 2021 UEC Tokyo.

Results of the ablation study

Remove a part of the proposed method.

input style

w/o SPADE

w/o Dpatch

full model

© 2021 UEC Tokyo.

User study

Baseline vs Multi-style SMGAN

Number of votes

120

4

^{© 2021} UEC Tokyo.

Conclusions

- In this study, we proposed a multi-style transfer network for text.
- We can also control the generation of various styles of text images in the generation stage.
- The results show that we have achieved a good effect on the generated style images based on the effective transformation of multiple text styles.

