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Food segmentation

 Various applications
— Food volume estimation, Food calorie estimation

* Problem

— Pixel-wise annotation cost e comiaes ¥ 2 ¥
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Motivation
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* A specific problem on food segmentation

— Should be plate regions in food region?
» Desirable segmentation is different in case by case

Include plate?

Which is better? /
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We can choice

according to situations
by plate segmentation
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Problem statement

* Food plate segmentation

— Train plate segmentation model without pixel-
wise annotation

— Use image-level labels for food categories

— Separate food images into three categories
« Background
* Food regions
 Plate regions
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Key idea

s79 Food category classifier
Not respond plate regions
Food/Non-Food classifier
Respond plate regions ¢ —¢f9_¢f9 e
Sp  Difference e LY
Plate regions
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Discriminative
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Input image
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Approach

 Visualization

— Class activation map[1]

— vp = CAM(x; 0;) € R**H*W ¢, = CAM(x;0,) € RE*HXW
« Mask from visualization

— Mg cqm: fOOd/Non-food mask, from vy

— M) .om: fOOd category mask, from v, and label y

k . . .
* M cam: Unreliable regions, upper k class of recognition results

* Plate mask 5, =559 519 yel
— Mp,cam- difference of the masks Sp:a set of pixels form mp .4,
. fg. :
— Mp out: CRF applied mask S;7:a set of pixels form mg cum

[1] Learning deep features for discriminative localization, Zhou et al., CVPR 2016
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Combination with o
weakly-supervised food segmentation

« Train plate segmentation model with weakly-
supervised segmentation model in end-to-end manner

* Weakly-supervised food segmentation
— Image-label to segmentation

— Output setting
* not include food plate regions

— Base method
 [1] Self-Supervised Difference Detection, ICCV 2019

[1] Self-supervised difference detection for weakly-supervised semantic segmentation, Shimoda et al., ICCV 2019
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SSDD module

* Integrates two candidate segmentation masks
using difference detection for stable refinement

— [1] Self-Supervised Difference Detection, ICCV 2019

Proposal A SSDD module

-

e DDNet

Input image Integration

DDNet

[1] Self-supervised difference detection for weakly-supervised semantic segmentation, Shimoda et al., ICCV 2019
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Architecture

- We use a SSDD module for integration of CAM and food+plate segmentation mask
- We make consistency between the food segmentation model and the plate
segmentation model in the food regions with two techniques

(DConstraining food regions by plate regions
@Penalizing background prediction using plate segmentation

Input image

CNN

Food segmentation

)

Seg
pred

Seg
mask

Plate segmentation

SSDD
module
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Architecture
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(DConstraining Food Regions by Plate Regions

Avoid mixing of the food regions and the plate region by integration based

constraining

CNN

Input image

mL,tch
Seg
Food segmentation mask &
( )
) Seg mp
pred
Plate segmentation
Seg
mask

SSDD
module
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Architecture
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@Penalizing Background Prediction Using Plate Segmentation

To limit the outputs of background, we constrain the outputs of the food
segmentation model on the background class using a penalty loss

Input image

CNN

SSDD
module
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Seg
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Experiments

« Dataset

— UEC FOOD100
« 100 classes, 10000 images
« 100 images per class
« Image-level label and bounding box annotation
« We annotated pixel-wise annotation to 1000 images for
evaluation
— Train
* 9000 images with image-level labels
« 8155 non-food images from Web and Twitter

— Test
« 1000 images with pixel-level labels
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Plate segmentation results

Input Raw CRF Input Raw CRF
image plate seg applied image  plateseg applied
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Fallure cases

Input Raw plate CRF applied Input Raw plate CRF applied
Image segmentation ~ segmentation image segmentation  segmentation
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Comparison with other weakly-
supervised segmentation methods

Quantitative evaluation was performed using weakly supervised food segmentation.
Because we only have pixel-wise ground truth for the food category masks

CAM [1] 30.7 65.1
Base method [2] 49.7 78.3
Simple does it [3]T 51.1 81.9
PFSeg(proposed) 55.4 82.6

[1] Learning deep features for discriminative localization, Zhou et al., CVPR 2016
[2] Self-supervised difference detection for weakly-supervised semantic segmentation, Shimoda et al., ICCV 2019

[3] Simple does it: Weakly supervised instance and semantic segmentation, Khoreva et al., CVPR 2017

T use Bounding box annotation and GrabCut
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Ablation study
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Simple PFseg Ground
Does It  (Proposed) truth
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Summary

* Predict plate regions without pixel-wise
annotations

— Boost weakly supervised segmentation accuracy
using plate segmentation

 Future work

— Improve inference of plate segmentation on the
poundaries in the plate regions and the
packground

— Further applications
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