

ICME 2020 WEAKLY-SUPERVISED PLATE AND FOOD REGION SEGMENTATION

Wataru Shimoda and Keiji Yanai The University of Electro Communications, Tokyo, Japan

© 2020 UEC Tokyo.

Food segmentation

Various applications

- Food volume estimation, Food calorie estimation

- Problem
 - Pixel-wise annotation cost
- Approach
 - Weakly-supervised learning
 - Train with image-level labels

Motivation

- A specific problem on food segmentation
 - Should be plate regions in food region?
 - Desirable segmentation is different in case by case

Problem statement

- Food plate segmentation
 - Train plate segmentation model without pixelwise annotation
 - Use image-level labels for food categories
 - Separate food images into three categories
 - Background
 - Food regions
 - Plate regions

Key idea

Approach

- Visualization
 - Class activation map[1]

 $- v_F = CAM(x; \theta_L) \in \mathbb{R}^{2 \times H \times W}, v_L = CAM(x; \theta_L) \in \mathbb{R}^{C \times H \times W}$

- Mask from visualization
 - $m_{F,cam}$: food/non-food mask, from v_F
 - $-m_{L,cam}^{y}$: food category mask, from v_{L} and label y
 - $m_{L,cam}^{r^k}$: unreliable regions, upper k class of recognition results
- Plate mask
 - $-m_{P,cam}$: difference of the masks
 - $m_{P,out}$: CRF applied mask

[1] Learning deep features for discriminative localization, Zhou et al., CVPR 2016

$$S_P = S_F^{fg} - S_L^{fg}, y \in L$$

 S_P :a set of pixels form $m_{P,cam}$ S_F^{fg} :a set of pixels form $m_{F,cam}$

Combination with weakly-supervised food segmentation

- Train plate segmentation model with weaklysupervised segmentation model in end-to-end manner
- Weakly-supervised food segmentation
 - Image-label to segmentation
 - Output setting
 - not include food plate regions
 - Base method
 - [1] Self-Supervised Difference Detection, ICCV 2019

[1] Self-supervised difference detection for weakly-supervised semantic segmentation, Shimoda et al., ICCV 2019

SSDD module

- Integrates two candidate segmentation masks using difference detection for stable refinement
 - [1] Self-Supervised Difference Detection, ICCV 2019

[1] Self-supervised difference detection for weakly-supervised semantic segmentation, Shimoda et al., ICCV 2019

Architecture

- We use a SSDD module for integration of CAM and food+plate segmentation mask
 We make consistency between the food segmentation model and the plate segmentation model in the food regions with two techniques
 ①Constraining food regions by plate regions
 - 2 Penalizing background prediction using plate segmentation

Architecture

①Constraining Food Regions by Plate Regions
②Penalizing Background Prediction Using Plate Segmentation

Avoid mixing of the food regions and the plate region by integration based constraining

Architecture

①Constraining Food Regions by Plate Regions

②Penalizing Background Prediction Using Plate Segmentation

To limit the outputs of background, we constrain the outputs of the food segmentation model on the background class using a penalty loss

Experiments

- Dataset
 - UEC FOOD100
 - 100 classes, 10000 images
 - 100 images per class
 - Image-level label and bounding box annotation
 - We annotated pixel-wise annotation to 1000 images for evaluation
 - Train
 - 9000 images with image-level labels
 - 8155 non-food images from Web and Twitter
 - Test
 - 1000 images with pixel-level labels

Plate segmentation results

Failure cases

Comparison with other weaklysupervised segmentation methods

Quantitative evaluation was performed using weakly supervised food segmentation. Because we only have pixel-wise ground truth for the food category masks

	mloU	Pixel Acc
CAM [1]	30.7	65.1
Base method [2]	49.7	78.3
Simple does it [3] ⁺	51.1	81.9
PFSeg(proposed)	55.4	82.6

[1] Learning deep features for discriminative localization, Zhou et al., CVPR 2016

- [2] Self-supervised difference detection for weakly-supervised semantic segmentation, Shimoda et al., ICCV 2019
- [3] Simple does it: Weakly supervised instance and semantic segmentation, Khoreva et al., CVPR 2017

† use Bounding box annotation and GrabCut

Ablation study

method	Constraining	Penalizing	mloU	Pixel Acc
(1)	-	-	49.7	78.3
(11)	~	-	42.9	75.4
(111)	-	~	52.6	81.0
(IV)	~	\checkmark	55.4	82.6

© 2020 UEC Tokyo.

Summary

- Predict plate regions without pixel-wise annotations
 - Boost weakly supervised segmentation accuracy using plate segmentation
- Future work
 - Improve inference of plate segmentation on the boundaries in the plate regions and the background
 - Further applications