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ABSTRACT
In this paper, we propose a novel method to infer plate re-
gions of food images without any pixel-wise annotation. We
synthesize plate segmentation masks using difference of visu-
alization in food image classifiers. To be concrete, we use two
types of classifiers: a food category classifier and a food/non-
food classifier. Using the Class Activation Mapping (CAM)
which is one of the basic visualization techniques of CNNs,
a food category classifier can highlight food regions contain-
ing no plate regions, while a food/non-food category classi-
fier can highlight food regions including plate regions. By
taking advantage of the difference between the food regions
estimated by visualization of two kinds of the classifiers, in
this paper, we demonstrate that we can estimate plate regions
without any pixel-wise annotation, and we proposed the ap-
proach for boosting the accuracy of weakly-supervised food
segmentation using the plate segmentation. In experiments,
we show the effectiveness of the proposed approach by eval-
uating and comparing the accuracy of the weakly-supervised
segmentation. The proposed approaches certainly improved
an image-level weakly-supervised segmentation method in
the food domain and outperformed a well-known bounding
box-level weakly-supervised segmentation method.

Index Terms— food image, semantic segmentation,
weakly-supervised semantic segmentation, plate region

1. INTRODUCTION

Semantic image segmentation using deep learning has been
actively studied especially in the era of deep learning, and its
performance has been improved greatly. However, we need
pixel-wise annotation to train semantic segmentation model
and it requires large annotation cost. Recently, many weakly-
supervised segmentation methods have been proposed to re-
solve the annotation problems. Weakly-supervised segmen-
tation is a task to achieve semantic segmentation by training
models with only image-level labels. Weakly-supervised seg-
mentation can reduce large annotation cost because the an-
notation cost of image-level labels is cheaper than pixel-wise
annotation.

In food image recognition, semantic segmentation is one
of the important tasks. We can utilize information of seman-
tic segmentation results for food volume estimation and food
calorie estimation. However, there are no large scale food
semantic segmentation datasets. On the other hand, there
are some large scale image recognition datasets, which have
image-level labels such as UEC-FOOD100 [1] and FOOD-
101 [2]. In addition, food images are closely linked to peo-
ple’s lives, and a large number of meal images are uploaded

Fig. 1. The motivation and the concept of our proposed ap-
proach.

to Social Networking Sites (SNS). Most of these SNS images
are given information such as texts and tags, which can be
considered as weakly-supervised labels. It would be of great
benefit if we can train semantic segmentation models by clas-
sification datasets and vast web images.

Many weakly-supervised segmentation methods for gen-
eral objects have been proposed. Though recent weakly-
supervised segmentation methods achieve high accuracy on
benchmark of weakly-supervised segmentation of general ob-
jects, we should consider the difference between general ob-
jects and food objects to apply the methods for food images.
For example, most of food images include plate regions and
it is important that whether or not food segmentation should
include plate regions. The solution will vary depending on
applications. While, in the case of calorie estimation, it is de-
sirable that the plate regions are excluded from food segmen-
tation, if the aim of food segmentation is inpainting it would
be desirable that the plate regions are included in food seg-
mentation. If the plate regions can be inferred, either case can
be accommodated. In addition, the information of the plate
regions may be beneficial for the refinement of food segmen-
tation. In this paper, we propose a novel method to synthesize
plate segmentation masks without any pixel-wise annotation
and we utilize the plate segmentation for improvement of the
weakly-supervised food segmentation. In Fig.1, we show the
motivation and the concept of the proposed approach.

To deduce plate regions without pixel-wise annotation, we
train not only a food category classifier but also a food/non-
food classifier. In the visualization of the food category classi-
fier, plate regions will not respond because plates are included
in most of food images. Therefore, plate regions are not ex-
pected to contribute to the recognition of the food category.
On the other hand, in the visualization of the food/non-food
classifier, plate regions will respond because plates are not
included in most of non-food images. Thus, the presence of
plate regions is expected to assist recognition by the food/non-
food classifier. As we stated, there is a difference in visual-
ization of plate regions between the food category classifier
and the food/non-food classifier. We utilize the difference be-



tween the visualization of the two classifiers for prediction
of plate regions, and synthesize plate segmentation masks.
In this paper, we also propose approaches to boost weakly-
supervised food segmentation accuracy using the plate seg-
mentation masks. Especially, we make consistency between
a food segmentation model and a plate segmentation model in
food regions and background. We demonstrate that the pro-
posed approaches can improve a generic weakly-supervised
segmentation method in the food domain, and we assess the
quality of the plate segmentation by the improvement of the
weakly-supervised segmentation method, which utilizes in-
ference of the plate segmentation. To the best of our knowl-
edge and belief, both of the works are the first attempt to ex-
tract plate regions from food images without any pixel-wise
annotation using visualization techniques, and to boost the
accuracy of food segmentation using plate segmentation.

2. RELATED WORK

2.1. Food Recognition

Food image recognition is a promising application of vi-
sual object recognition, owing to its potential in estimat-
ing food calories and analyzing the eating habits of peo-
ple for their general well-being. There have been numer-
ous studies on food image recognition that have been pub-
lished [2, 3, 4, 5, 6, 7, 8, 9].

To estimate the calories associated with the food, the
segmentation of food is beneficial. Some studies attempted
food region segmentation [5, 10, 4, 11]. Matsuda et
al. [5] proposed the use of multiple methods to detect food
regions, including Felzenszwalb’s deformable part model
(DPM) [12], a circle detector, and the JSEG region segmenta-
tion method [13]. He et al. [11] employed local variation [14]
to segment food regions for estimating the total calories asso-
ciated with the food in a given food photo. In some studies on
mobile food recognition [10, 4], users were asked to point to
the rough locations of each food item in an image of food and
to perform GrabCut [15] for extracting food item segments.

In addition, there have been several studies on the estima-
tion of calories using computer vision techniques. Kong et
al.[16] reconstructed 3D food models using multi-angle pic-
tures and estimated the calories associated with the food us-
ing the cubic volume of 3D models. Chen et al.[17] recog-
nized an image and computed the cubic volume using depth
information. It must be noted that they obtained depth in-
formation using a sensor. 3D base calorie estimation meth-
ods tend to be laborious for users. On the other hand, My-
ers et al.[18] proposed a calorie estimation application called
“im2calorie.” They obtained each pixel depth information
through deep learning prediction and estimated the food calo-
ries. However, Myers et al. have not achieved for practical
use.

Shimoda et al. [19] proposed weakly-supervised food
segmentation and detection methods. They used a back-
propagation based visualization method and adapted it to a
food domain but they evaluated their methods for only object
detection. We also explored efficient weakly-supervised food
segmentation method. In this paper, we propose to use a plate
segmentation model for boosting weakly-supervised segmen-

tation accuracy. As our best knowledge, this is the first work,
which infers plate regions from food images and use it for
food image segmentation.

2.2. Weakly-Supervised Segmentation

In the early works of CNN-based weakly-supervised segmen-
tation, visualization based methods have been studied. Since
the pixels that contribute to classification have a relation-
ship to regions of target objects, visualization methods can be
used as segmentation methods under weakly-supervised set-
ting. Zeiler et al. [20] showed that the derivatives obtained by
back-propagation from CNN models trained for classification
tasks highlight the region of a target object in an image. Si-
monyan et al. [21] used the derivatives as the GrabCut seeds
and extended a visualization method to a weakly-supervised
segmentation method. It is also demonstrated that multi-class
objects region also can be captured by difference class spe-
cific derivatives [22, 23]. In recent years, Class Activation
Mapping (CAM) [24] is widely adopted for generating seed
regions for weakly-supervised segmentation methods.

Wei et al. [25] proposed a novel approach to train a
fully supervised segmentation model using pixel-level la-
bels obtained by saliency maps under weakly-supervised set-
tings [26]. Ahn et al. [27] proposed a method to learn pixel-
level similarity from CRF results, and apply random walk
based region refinement, which achieved very high scores on
the Pascal VOC 2012 dataset. Shimoda et al. [28] proposed
Self-Supervised Difference Detection (SSDD) integrates two
segmentation candidates effectively by difference detection.
SSDD further improved PSA and achieved the current state-
of-the-art on Pascal VOC dataset. In this paper, we use
SSDD [28] as a base weakly-supervised segmentation method
because of its performance.

3. PLATE SEGMENTATION WITH VISUALIZATION
OF FOOD CLASSIFIERS

In this paper, we synthesize plate segmentation masks for
learning a plate segmentation model that infers plate regions
of food images. To generate plate regions, we use visualiza-
tion of a food category classifier and a food/non-food classi-
fier. Fig.2 shows the illustration on the idea of the proposed
approach.

We assume that vL = CAM(x; θL) ∈ RC×H×W is a
visualization of the C-class food classifier for input image x
generated by Class Activation Mapping (CAM) [24]. In the
similar manner, the visualization of the food/non-food clas-
sifier is represented by vF = CAM(x; θF ) ∈ R2×H×W ,
where θL and θF are the parameters for the classifiers. Both
vF and vL should respond to food regions. However, the re-
sults of visualization are expected to be different. In partic-
ular, while the visualization of the food/non-food classifier
returns clear responses in plate regions, the visualization of
the food category classifier returns weak responses in plate
regions. This is because the plate regions have strong co-
occurrence with food images. In this paper, we assume that
the difference in vF and vL corresponds to plate regions and
we synthesize plate segmentation masks by utilizing the dif-
ference.



Fig. 2. An illustration of the proposed approach for synthe-
sizing plate segmentation masks using the visualization tech-
nique.

Here, we denote the steps in synthesizing plate segmen-
tation masks. First, from vF , we obtain binary segmentation
masks mF,cam whose pixels represent belonging to foods or
non-food objects. Secondly, we obtain segmentation masks
my

L,cam for category labels y assigned to images from vL.
If mF,cam and my

L,cam are able to be extracted correctly,
the difference in the masks would be plate regions based on
the above assumption. However, the visualization of food
category classifier is unreliable because of the difficulty of
food classification. Therefore, in this work, in addition to
the visualization for the class label, we define unreliable re-
gions obtained from the visualization of the top K classes
of the recognition result. In practice, we define unreliable
regions mrK

L,cam whose pixels do not overlap with my
L,cam,

and just ignore the pixels when training of a plate segmen-
tation model. We set K to 30. We empirically decided this
value. We denote the segmentation masks synthesized by the
above processing as mP,cam. Here, we define a set of pix-
els for mP,cam as SP,cam. This set can be represented by
SP,cam = Sfg

F,cam − Sfg
L,cam, where Sfg

L,cam is a set of the
foreground of the categorical food regions and Sfg

F,cam is a
set of the foreground of the whole food regions. We train the
plate segmentation model by the synthesized ternary masks
mP,cam, which category consists of background, plate re-
gions and food regions. The loss of the plate segmentation
model is as follows:

Lplate = − 1∑
k=(0,1,2)

|Sk
P,cam|

∑
k=(0,1,2)

∑
u∈Sk

P,cam

log(hk
u(x; θP )),

(1)
where hk

u is conditional probability of observing any label k
at any location u. SP,k is a set of pixels for a class k of the
mask mP,cam. We apply CRF [29] to the probability map
of the plate segmentation model and used the CRF applied
results as the final plate segmentation mP,out.

4. IMPROVING WEAKLY-SUPERVISED FOOD
SEGMENTATION USING PLATE SEGMENTATION

In general, the inside of plate regions are food regions and the
outside of plate regions are non-food regions. In this research,
we aim to improve the accuracy of weakly-supervised food
segmentation by utilizing the relationship between the plate
regions and the food regions. To perform weakly-supervised
segmentation, we use a method that utilizes Self-Supervised
Difference Detection (SSDD) [28]. To improve this further,

Fig. 3. An overview of the proposed method for refinement
of weakly-supervised food segmentation methods.

we propose a new approach which utilizes estimated plate re-
gions. In this section, we describe the details of the approach
for making consistency between a food segmentation model
and a plate segmentation model. Fig.3 shows an overview of
the proposed approach.

4.1. Self-Supervised Difference Detection (SSDD) Mod-
ule

In this paper, we use SSDD [28] as a base weakly-supervised
segmentation method that integrates two candidate segmenta-
tion masks using difference detection. The proposed method
uses a SSDD module, which takes two segmentation masks as
inputs and outputs one integrated mask. To be concrete, here,
we denote the two segmentation masks as mK and mA that
has a role of knowledge and advise, respectively. The mod-
ule synthesizes a new segmentation mask mD by integration
of mK and mA using inference of difference detection. Dif-
ference detection is a task to estimate differences of two seg-
mentation mask. A mask for the difference MK,A ∈ RH×W

is defined as following:

MK,A
u =

{
1 if (mK

u = mA
u )

0 if (mK
u ̸= mA

u ),
(2)

where u ∈ {1, 2, .., n} indicates a location of pixels, and
n is the number of pixels. In the module, we use the Dif-
ference Detection network for inference of the difference,
DDnet(eh(x; θe), el(x; θe), m̂; θd), d ∈ RH×W , where m̂ is a one-
hot tensor with the same number of channels to the target
class number, θd is parameters of DD-Net and eh(x; θe) is
high level features and el(x; θe) is low level features extracted
from a backbone network such as ResNet. DD-Net takes ei-
ther of segmentation mask as an input, and outputs the es-
timation of the difference. We calculate a confidence score
wu ∈ R from inferences of the DD-Net dK and dA for the
masks mK and mA:

wu = dKu − dAu + biasu, (3)

where bias is a hyper parameter for a border of the selection.
The refined masks mD obtained from mK and mA are de-
fined by the following expression.

mD
u =

{
mA

u if (wu ≥ 0)

mK
u if (wu < 0)

(4)

In this paper, we use mask of CAM mL,cam as knowledge
and a synthesized mask using the plate segmentation model



mL,plt as advice. From these masks, we generate mL,tch and
use it for training of a segmentation model. We describe the
detail of mL,plt in the next section.

4.2. Constraining Food Regions by Plate Regions

In standard weakly-supervised food segmentation methods,
the food and plate regions may be mixed and it would cause
problems in some food-specific applications. In this study,
to prevent this we make consistency between the food seg-
mentation model and the plate segmentation model in the
food regions. As we stated in Section 4.1, we integrate
two segmentation masks mL,cam and mL,plt using the SSDD
module. Since the accuracy of the integrated segmentation
mask mL,tch depends on the accuracy of the two segmen-
tation masks used for the inputs, the improvement of these
inputs would lead better accuracy. Here, we refine the one
of the input segmentation mask, which has a role of advice.
Specifically, we refine the outputs of the food segmentation
model mL,out using the outputs of the plate segmentation
model mP,out, and generate a mask mL,plt. To avoid mix-
ing of the food regions and the plate regions we constrain the
food regions by below processing:

mL,plt =

{
mL,out if (mP,out = food class)

BG class if (mP,out = BG or plate class)
(5)

It is expected that the outputs near by the boundary in food
regions and plate regions would be refined by this processing.

4.3. Penalizing Background Prediction Using Plate Seg-
mentation

Since food segmentation is a kind of fine-grained classifi-
cation, the degree of difficulty is high compared to general
object segmentation. Actually, the food segmentation model
tends to output background class in regions that are difficult to
inference an appropriate category. Therefore, in this section,
we limit the outputs of background by making consistency in
inference of the food segmentation model and the plate seg-
mentation model. To limit the outputs of background, we con-
strain the outputs of the food segmentation model on the back-
ground class using a penalty loss. The penalty loss minimizes
the cross entropy loss for the inverse conditional probability
on pixels that belongs inconsistency regions between the food
segmentation model and the plate segmentation model. We
denote the outputs of the food segmentation model as h(x; θs)
and a set of the pixels that are classified as food regions by the
plate segmentation model as Sfood

P,out. We define penalty loss
for the background class as following:

Lpenalty = − 1

|Sfood
P,out|

∑
u∈Sfood

P,out

log(h̃bg
u (x; θseg)), (6)

where h̃bg
u (x; θs) is conditional probability maps of

background class putted negative one on it before soft-
max function.

4.4. Final Loss for The Food Semantic Segmentation
Model

Here, we explain the final loss function for training the food
segmentation model. The parameters θseg of the food seg-
mentation model are trained using the outputs of the SSDD
module mL,tch by below equation:

Lmain = − 1∑
k∈ŷ |Sk

L,tch|
∑
k∈ŷ

∑
u∈Sk

L,tch

log(hk
u(x; θseg)).

(7)
In addition, we also use the loss of Lpenalty we stated in Sec-
tion 4.3 for training the segmentation model. The final loss of
the segmentation model is as following:

Lseg = Lmain + 0.1Lpenalty + Lplate. (8)

We empirically decided the coefficient of the Lpenalty .

5. EXPERIMENTS

In the experiments, we used the UEC-FOOD100 dataset [5].
The UEC-FOOD100 dataset [5] consists of 100 class food
categories, and each category includes 100 images. Each food
item has bounding box annotation, although they have no an-
notation for segmentation masks. Then, we add new semantic
segmentation mask to 10% of UEC-FOOD100 dataset, and
used them for evaluation of weakly-supervised segmentation.
In addition, we have collected 8155 non-food images from
the Web and Twitter, and we use them for training of the
food/non-food classifier. We train the proposed model using
only image-level labels. The training data does not include
bounding information. For training of the classifier models
and food segmentation model, we used the 90% of the UEC-
FOOD100 dataset.

We evaluate the accuracy of the weakly-supervised seg-
mentation using mean Intersection over Union (mIoU) and
Pixel accuracy (Pix acc). mIoU is a standard measurement
for semantic segmentation that evaluates the overlap and the
union in inference and ground truth. Pix acc is a more simpler
measurement that is the accuracy for the all pixels.

5.1. Implementation Details

As semantic segmentation model we used a ResNet-38
model, which is the same architecture used in [28]. The input
image size is 448x448 for training and test images and the
output feature map size before upsampling is 56x56. These
feature map sizes are adjusted to 112 by 112 using sim-
ple linear interpolation. Before training of the segmentation
model, we trained the food category classifiers with initial-
ization using a pre-trained model of ImageNet. After training
of the food category classifiers, we initialized the parameters
of backbone models with the food category classifier. The
backbone network of the food segmentation model, plate seg-
mentation model and food classifier models are shared, and
we trained them in an end-to-end manner. Note that we also
continued training of the classifier models. We set an ini-
tial learning rate to 1e-3 (1e-2 for initialization without the
pre-trained model) and we decreased learning rate with co-
sine warm up [30]. The batch size for training is 2. For data



Fig. 4. The examples of the plate segmentation model for
the successive results. From left to right, input images, raw
plate segmentation masks and CRF applied plate segmenta-
tion masks.

augmentation and inference technique, we followed the pa-
per [28]. We implemented the proposed method using Py-
Torch.

5.2. Qualitative Result of Plate Segmentation and Discus-
sion

In this work, we propose a method to synthesize plate seg-
mentation masks of food images without pixel-wise annota-
tion and we train a plate segmentation model with the synthe-
sized masks. Fig.4 shows some successful examples of plate
segmentation. The proposed plate segmentation model ex-
cels on inference of plates that have the round shape, but, in
several cases, the model can also successfully infer plate re-
gions whose shape is not round such as the case of the middle
row in Fig.4. This indicates that the proposed method infers
various types of plate regions and the inference does not fall
trivial solutions. Fig.5 shows some failure cases. While the
proposed plate segmentation model can predict the bound-
aries between food regions and plate regions, it often fails
to capture boundaries between plate regions and background
regions. The proposed plate segmentation model also goes
wrong on inference for big plates that extend toward outside
of the image such as the example of the bottom of the left
in Fig.5. We consider that the both of the failure cases are
caused by limitations of visualization, that is the whole plate
regions do not contribute to the recognition of the food/non-
food classifier in these cases. There is also another problem in
the plate segmentation model, the plate segmentation model
attempts to predict plate regions if there are no plates in im-
ages. These problems do not harm the accuracy of weakly-
supervised segmentation, however, it would be problems on
some other applications. There is still room for improvement
in this approach.

5.3. Ablation Study

Here, we study how each of the parts of the proposed ap-
proach influences the overall performance. Table 1 shows
improvement of the accuracy of weakly-supervised segmen-
tation by the proposed approaches. Constraining is the ap-
proach proposed in Section 4.2 for reducing overflowed food

Fig. 5. The examples of the plate segmentation model for the
failure cases. From left to right, input images, raw plate seg-
mentation masks and CRF applied plate segmentation masks.

Table 1. Ablation study for the approaches to refine food
segmentation by plate segmentation masks.

Method Constraining Penalizing mIoU Pix acc
(I) - - 49.7 78.3
(II) ✓ - 42.9 75.4
(III) - ✓ 52.6 81.0
(IV) ✓ ✓ 55.4 82.6

regions and Penalizing is the approach proposed in Sec-
tion 4.3 for enhancing outputs of food regions on pixels that
are often classified as background. The constraint of the food
regions using plate segmentation causes large performance
dropping because the constraint is too strong and makes the
unbalance on inference of the background class though we
expected it would be helpful to capture the boundary of the
food regions. Penalizing background regions using plate seg-
mentation boosts up the accuracy from 49.7% to 52.6%. This
gives evidence that SSDD tend to misclassify on pixels that
estimated as background, and plate segmentation can assist to
reduce the misclassfication on such pixels. When we incorpo-
rate both of the approaches, the constraint of the food regions
further leads to the performance boost of 2.8%. These results
indicate that the both of approaches help weakly-supervised
food segmentation. The balance on the food regions and back-
ground regions is important, and plate segmentation is effec-
tive on making the balance. We show the qualitative results in
Fig.6.

5.4. Comparison with Existing Weakly-Supervised Seg-
mentation Methods

We compare with three existing weakly-supervised segmen-
tation methods. Class Activation Mapping (CAM) [24]
is a popular weakly-supervised segmentation method that
roughly outputs object location with the ambiguous boundary.
SSDD [28] is one of the state-of-the-art method among the
current works of weakly-supervised segmentation that greatly
improves CAM using CRF and the self-supervised difference
detection module. We used SSDD as a base method, and com-
bine the proposed approaches that use plate segmentation. To
assess the effectiveness of the proposed approach, we also
compare the proposed approach with “Simple Does It” [31].
“Simple Does It” [31] is a well-known bounding box-based
weakly-supervised segmentation. While CAM, SSDD and
the proposed method are trained with only image-level la-
bels, “Simple Does It” requires bounding box for training,
i.e. it uses additional supervision. We compare the proposed
method with the most simplest way using GrabCut [15] pro-
posed in the paper [31]. More concretely, the method gen-
erates pseudo pixel-level labels from each bounding box by



Table 2. Comparison with existing methods.
Method mIoU Pix acc

CAM [24] 30.7 65.1
SSDD (base method) [28] 49.7 78.3

Simple Does It [31] 51.1 81.9
PFSeg (Proposed) 55.4 82.6

Fig. 6. Examples of the weakly-supervised food segmentation
results. (I), (II), (III) and (IV) correspond to Table 1 of the
method. From the results, we can observe that the both of
the proposed approaches make large effects on the balance of
inference for the food regions and background regions, and
we can make the good balance by using both of them together.

applying GrabCut [15] and extracting foreground masks. Af-
ter extracting foreground masks, the method gives the cate-
gory labels to the foreground masks using the labels of the
bounding boxes, then the method trains a segmentation model
with the generated segmentation masks. This approach is
simple, but a powerful baseline considering the advantage of
bounding box information. The performance comparisons are
summarized in Table 2. We denoted the proposed method as
Plate-based Food Segmentation (PFSeg).

As shown in Table 2, the proposed method achieved
55.4% on mIoU and 82.6% on Pix acc. Compared with the
base method, the gain are 5.7 points and 4.3 points on mIoU
and Pix acc, respectively. They are also higher than “Simple
Does It”, which uses bounding boxes as additional training
information. These results indicate that the proposed method
is efficient and plate segmentation model trained without
pixel-wise annotation is beneficial for improving the weakly-
supervised food segmentation. Fig.7 (in the supplementary
material) shows the examples of the weakly-supervised food
segmentation methods.

6. CONCLUSION

In this paper, we proposed a method to synthesize segmenta-
tion masks for food plate regions by visualization. We used
a food category classifier and a food/non-food classifier for
visualization and extracted plate regions from the difference
in the visualization of the two types of the classifiers. In ad-
dition, we also proposed the approach to make consistency
between a food segmentation model and a plate segmenta-
tion model, and demonstrated that we boosted the accuracy
of weakly-supervised food segmentation using the proposed
approach.

Our future works are as follows. First, we would like
to improve inference of plate segmentation on the bound-

aries in the plate regions and the background using other
weakly-supervised segmentation techniques, such as affinity
model [27]. Second, we also would like to use the plate
segmentation model for other applications. We consider that
there are many possibilities as the applications, such as food
volume estimation, plate separable food image generation,
and mask-based food style transfer or domain conversion.
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