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Abstract. Images generated from Cycle-Consistent Adversarial Net-
work (CycleGAN) become blurry especially in areas with complex edges
because of loss of edge information in downsampling of encoders. To solve
this problem, we design a new model called ED-CycleGAN based on orig-
inal CycleGAN. The key idea is using a pre-trained encoder: training an
Encoder-Decoder Block (ED-Block) at first in order to get a difference
map, which we call an edge map and is produced by the subtraction
of input and output of the block. Then, the encoder part of a gener-
ator in CycleGAN share the parameters with the trained encoder of
ED-Block and they will be frozen during training. Finally, by adding
the output from a generator to the edge map, higher quality images can
be produced. This structure performs excellently on “Apple2Orange”,
“Summer2Winter” and “blond-hair2brown-hair” datasets. We use SSIM
and PSNR to evaluate resolution of results and our method achieved the
highest evaluation scores among CycleGAN, Unit and DiscoGAN.

Keywords: ED-Block · edge map · pre-trained Encoder · Cycle-Consistent
Adversarial Networks.

1 Introduction

CycleGAN [10] realizes domain translation in the absence of paired data. The
structure of two generators consists of three parts: an encoder, a transformer
and a decoder. The size of images shrinks in the encoder, stays constant in the
transformer, and expands again in the decoder. Because of downsampling pro-
cess realized by stride-2 convolution layers of encoder, the information of edges
in original images are lost. After being processed by the transformer, the images
expands in the decoder but only a part of edge information are restored. There-
fore, the output images will be blurry. Especially for some complex pictures,
edges are mixed and it is difficult to distinguish object shapes.

Our contribution is to suppose a new network based on CycleGAN to improve
image quality with appropriate amount of parameters and time expense. This
network works well on “Apple2Orange” and “Summer2Winter” datasets pro-
vided by Jun-Yan Zhu et al. [10] and also performs well on “blond-hair2brown-
hair” datasets, which we collected from celebA dataset provided by [8]. Our
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network can be easily trained by only the highly successful backpropagation and
model freezing. This method need high texture similarity between input and
output and focus on color translation. Therefore, it can be used in enhancement
of domain translated images, virtual makeup, hair-color changing and so on, all
of which need color translation and high quality images.

2 Related Work

2.1 Cycle-Consistent Adversarial Networks

CycleGAN [10] realizes unpaired training data in image-to-image translation.
This network consists of two Generative Adversarial Networks (GANs) [1] and
inputs are two images in different domains. One input is translated from do-
main X to domain Y and the other is from Y to X. The key to CycleGAN’s
success is cycle-consistency loss, which represents cycle consistency and guaran-
tees that the learned function can map an individual input to a desired output.
The structure of two generators adopted from Justin Johnson et al. [3] is the
encoder-transformer-decoder: the input images will be shrunk in the encoder and
expanded in the decoder. Information of edges are lost in this processing since
downsampling is irreversible and transposed convolution layers cannot totally re-
store edge information in the decoder part. So when observing the output from
CycleGAN, we can find some areas in images are blurry and indistinct. To solve
this problem, our method is adding a new block called ED-Block in CycleGAN,
which can extract edge map from input image. In this way, the edge informa-
tion is protected from being lost in the encoder. By adding the edge map to the
output from the generator, we can get the much clearer image as an output.

2.2 Super-Resolution

Super-Resolution (SR) refers to the reconstruction of corresponding high-resolution
images from observed low-resolution images, which has important application
value in monitoring equipment, satellite images and medical imaging. Super-
Resolution Generative Adversarial Network (SRGAN) [6] is a SR problem method
based on deep learning, using GAN [1]. The key point is that: since traditional
method cannot make results enough smooth when the magnification of images
is too large, SRGAN uses GAN to generate appropriate edge information to
improve image resolution. But the generated edge information is irrelevant to
input. Hence, when we zoom in the results, we can observe that although the
generated edges have a good holistic visual feeling in whole image, they are
visually meaningless in small visual field.

Therefore, we propose ED-Block, which can extract edge information of in-
put, to remain the relevance between edge information and input images. In this
way, we need not to train a GAN network to generate edge information, which
costs too much time expense and memory cost, and we can get highly relevant
edge information, which will be added to output to improve image quality.
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Fig. 1. The structure of our proposed network. The orange part is ED-Block consisting
of only an encoder and an decoder. The gray part is original CycleGAN. ED-Block and
CycleGAN share the same frozen encoder but their decoders are different.

3 Proposed method

Edge information will be lost in the encoder because of irreversible downsampling
and cannot be fully restored in the decoder. The key to our idea is extracting
edge map of original input by a Encoder-Decoder Block (ED-Block) and adding
them to the output from generator to restore the edge information.

3.1 Encoder-Decoder Block

Structure of Encoder-Decoder Block The architecture of ED-Block is
shown in Figure 1 and is adopted from the generator of CycleGAN. First, an
input image will be processed by a convolution layer followed by an instance
normalization layer to transfer from 3 to 64 channels and kernel size is 7 × 7.
Then, the image will be shrunk two times in the encoder, of which the down-
sampling is realized by two convolution layers using stride 2. Both of them are
followed by an instance normalization layer and a ReLu layer. In the decoder,
feature maps are expanded by two transpose convolution layers to original size.
Both of two layers are followed by an instance normalization and a ReLu layer.
Finally, feature maps are processed by a convolution layer to transfer to 3 chan-
nels and the kernel size of the layer is also 7 × 7 as that in the encoder. After
Tanh operation, the recovered image are output to be used in subtraction.

Training Encoder-Decoder Block ED-Block is trained in advance and then
it will be frozen before training CycleGAN part. The work of ED-Block is to
restore the input as much as possible even though restoring the original edge
information is very difficult. In order to guarantee that the output is similar
enough to input, we propose recover loss Lrecover to train the ED-Block, which
is L1 loss to measure the difference between recovered image s ′ and the original
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image s. This process can be shown below:

Lrecover(s, s′) = ||s− s′||1 (1)

After the ED-Block has been trained well, the main visual difference between
output images from it and input images are the edges and boundaries. Therefore,
if we subtract the output images s ′ to the original input s, we can get edge map
sedge, which saves the necessary edge information. This process can be shown as
Eq.2.

sedge = s− s′ (2)

The number of training ED-Block epoch is very significant. If the epoch is set too
high, the edge map we get cannot has enough edge information. Since by more
developed block, recovered images are more detailed and less information can be
extracted by subtraction. Besides, if the epoch is set too small, it is difficult for
block to reconstruct the image and some color information will be remained in
edge map, which is not needed. we set the training epoch of ED-Block to 200 in
our experiment and the reason will be illustrated in Sect.4.2.

Comparison with CycleGAN with Skip-Connection Skip-connection pro-
posed in U-Net [9] realizes the effective use of feature maps of each layer in
subsequent calculations by transmitting data of low-level layers directly, which
improves accuracy of semantic segmentation. Therefore, CycleGAN with skip-
connection can also avoid data lost caused by encoding process. However, the
transmitted data in skip-connection channel not only includes edge informa-
tion, but also includes color information of images. Because our ED-Block can
selectively only extract edge information, the performance of CycleGAN with
skip-connection cannot be better than ours. To make comparison, we design a
CycleGAN with skip-connection structure, in which convolution layers of the en-
coder and the decoder with the same input sizes are connected by skip-connection
channel to transmit data to the other end of network. Table 2, Table 3 and Ta-
ble 4 show the evaluation scores of ours and CycleGAN with skip-connection,
which are symbolized as “Ours” and “CycleGAN-Skip” separately. The output
images of CycleGAN-Skip are shown in the Fig. 6.

3.2 Partly Frozen CycleGAN

Structure of Generator The generator has three parts: an encoder, a trans-
former and a decoder. The architecture is adopted from J. Johnson et al. [3].
Therefore, the encoder part is the same as that in Encoder-Decoder Block in or-
der to share parameters while training. The transformer consists of nine residual
blocks and each residual block consists of two stride-1 convolution layers, two
instance normalization layers and a ReLu layer.

Structure of Discriminator For the discriminator networks, we use 16 × 16
PatchGANs [2] aiming to distinct whether 94×94 overlapping image patches are
real or fake. This PatchGANs consists of five convolution layers using stride-4
followed by instance normalization and Leaky ReLu layers.
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Training CycleGAN First, we apply the parameters of the pre-trained en-
coder of ED-Block to two generators in CycleGAN and freeze them. With the
same frozen parameters in the encoder, the lost edge information are the same
in both ED-Block and the generator. Therefore, the extracted edge information
from ED-Block can have high relevance to the output from the generator. The
initialization of rest parameters of the other layers are using Gaussian distribu-
tion N (0, 0.02).

We adopt adversarial losses [1] and cycle consistency loss [10] to train Cycle-
GAN. For adversarial loss, Gst aims to transfer image s of source domain into
image Gst(s) of target domain to fake DT , while DT aims to correctly identify
the real image t and fake image, which is integration of Gst(s) and sedge calcu-
lated by Eq.2. Eq.3 is the adversarial loss, which Gst tries to minimize but DT

tries to maximize.

Ls
adv(Gst,DT ) = Et∼PT (t)[logDT (t)]

+ Es∼PS(s)[log (1−DT (Gst(s) + sedge))] (3)

According to Jun-Yan Zhu et al. [10], input s can be mapped to any random
permutation of images since it is hard to guarantee the learned mapping function
only with adversarial loss. Therefore, cycle consistency loss is used to further
reduce the space of possible mapping functions. Gst aims to transfer input to
target domain and Gts aims to transfer fake images, which combines Gst(s)
with sedge, back to source domain,which is shown in Eq.4. The final recovered
image s ′′ will be calculated with original input s to get the difference to back
propagation. This process is shown in Eq.5.

s′′ = Gts

(
Gst(s) + sedge

)
+ sedge (4)

Ls
cyc(s, s

′′) = ||s− s′′||1 (5)

Moreover, s′′ is got from Gts plus sedge rather than plus tedge in Eq.4. Because
sedge is extracted from input s and tedge is from the generated image in the
target domain, the edge information of sedge is better than that of tedge. Hence,
we choose sedge rather than tedge in cycle consistency process. Besides, we shows
the evaluation scores of using sedge and tedge separately, which are symbolized
as “Ours” and “Ours (with tedge)” in Table 2, Table 3 and Table 4. The output
images of “Ours (with tedge)” are shown in the Fig. 6.

Finally, we combine the adversarial and cycle-consistency losses for both
source and target domains to optimize the final energy, which is shown below:

L(Gst,Gts,Ds,Dt) = Ls
adv + Lt

adv + λ(Ls
cyc + Lt

cyc) (6)

We use the loss hyper-parameters λ=10 in our experiments. The optimal param-
eters of L are obtained by solving the minimax optimization problem:

G*st,G*ts,D*s,D*t = argmin
(

G*st,G*ts

argmax
D*s,D*t

L
(
G*st,G*ts,D*s,D*t

))
(7)
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4 Experiments

4.1 Training setting

The usage of sedge need high texture similarity between output and input. There-
fore, the domain translation should not translate the object textures and edges
but only translate color. To ensure this premise, we use “Apple to Orange” and
“Summer to Winter” datasets provided by Jun-Yan Zhu et al. [10] and “blond-
hair2brown-hair” datasets including about 3000 blond and brown hair images
from celebA dataset provided by [8] to train models and we adopt CycleGAN’s
notation to illustrate our structures. For example, “c7s1-k -R” means a 7 × 7
convolution layer with stride 1 and k filters, followed by a ReLU activation and
“ct3s2-k -LR” means a 3 × 3 transposed convolution layer with stride 2 and k
filters, followed by a LeakyReLU activation with slop 0.2. “rk” denotes a residual
block with k filters. A tanh activation is indicated by ‘T’. Moreover, we apply
instance normalization after all convolution layers and transposed convolution
layers except the first convolution layer of discriminator and the last convolu-
tion layers of decoder and discriminator. The structures of our model are shown
below:

ED-Block structure is: c7s1-64-R, c3s2-128-R, c3s2-256-R, ct3s2-128-R, ct3s2-
64-R, c7s1-3-T.

Residual Block structure is: c3s1-256-R, c3s1-256

Generator structure is: c7s1-64-R, c3s2-128-R, c3s2-256-R, r256, r256, r256, r256,
r256, r256, r256, r256, r256, ct3s2-128-R, ct3s2-64-R, c7s1-3-T.

Discriminator structure is: c4s2-64-LR, c4s2-128-LR, c4s2-256-LR, c4s2-512-LR,
c4s1-1

All batch sizes of ours and other models for comparison are 4 and we use Adam
solver [5] to optimize parameters and initial learning rate is 0.0002, which will de-
crease in each epoch after 100 epochs. We use GPU Intel Core i7-4790(3.60GHz)
to train models.

4.2 Training Epoch of ED-Block

The epoch of training ED-Block should be proper to reconstructed the input
image better with smaller loss Lrecover and less time expense. Figure 2 shows
the generated results when the number of training epochs are 10, 50, 100, 200,
and 500. We can observe that in the results of 10, 50, 100 epochs, there are a
little needless remaining color information and its amount decreases by epochs.
In the edge maps of 200 and 500 epochs, the color information is eliminated.
Therefore, the ED-Block should be trained in enough epochs to get rid of color
influence. Figure 3 shows the graph of Lrecover during training. We can observe
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Input 10 epochs 50 epochs 100 epochs 200 epochs 500 epochs

Fig. 2. The results of ED-Block by different training epochs. In the lower training
epochs, such as 10, 50, 100 epochs, color information remains in edge map. The higher
training epochs, the less color residues. In 200 and 500 epochs, remained color infor-
mation is not visually obvious.

Fig. 3. The graph of Lrecover during 500 training epochs. Loss function drops rapidly
in first 100 epochs and tends to be gentle later.

that Lrecover in 500 epochs is only a little lower than that in 200 epochs but
with much higher time expense. Based on Figure 2 and Figure 3, we set training
epoch of ED-Block to 200.

4.3 Results

Figure 4 represent the generator loss decrease during 200 training epochs. Be-
cause the encoder is pre-trained and frozen and only the transformer and the
decoder part need to be trained, our models has much faster convergence speed
compared with CycleGAN. Figure 5 shows the results from ours, original Cy-
cleGAN, Unit [7] and DiscoGAN [4] in 200 training epochs. Figure 6 shows the
results from from our model, our model using tedge in cycle consistency equa-
tion, CycleGAN and CycleGAN with skip-connection channels. We can observe
that our model remains much more edge information so that the results are far
clearer and have more texture compared with other results, which are obviously
blurry. Therefore, our network has achieved a great progress in improving the
image quality.
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Fig. 4. The left side graph shows loss value of two generators and right side graph
shows loss value of two discriminator during 200 epochs.

4.4 Evaluation and Discussion

Table 1 shows the comparison on quantity of parameters and time training ex-
pense on “Apple2Orange” dataset. The amount of parameters of our model is
same as CycleGAN and much less than DiscoGAN while Unit has least param-
eters. The time expenses of ours, CycleGAN and DiscoGAN do not have large
difference and much less than that of Unit. To summarize, our model has a com-
promise between the amount of parameters and training time expense.

Table 1. Models Comparison.

Model Parameters (105) Time expense (hours)

ED-Block 7.56 1.533
Our-CycleGAN 275.30 16.898

CycleGAN 282.86 15.35
Unit 270.66 21.198
Disco 598.1 16.844

We use SSIM and PSNR, of which input are real images and cycle consistency
image shown in Fig. 7 and Fig. 8, to evaluate image resolution. Table 2, Table 3
and Table 4 show the SSIM and PSNR scores of Ours, Ours (with tedge), Cycle-
GAN, CycleGAN-Skip, Unit [7] and DiscoGAN [4] after 200 training epochs on
“Apple2Orange”, “Summer2Winter” and “blond-hair2brown-hair” datasets.

Our model achieves the highest scores among them except PSNR score of
consistent-orange. Ours (with tedge) achieves the second highest SSIM scores
on “apple2orange” and “Summer2Winter” datasets and only a little lower than
CycleGAN on “blond-hair2brown-hair” dataset but PSNR scores are not ideal.
Since PSNR realizes image evaluation based on the mean-square error between
corresponding pixels and does not take into account the visual characteristics
of human eyes, the ability to capture perceptually relevant differences is very
limited and it is acceptable that the score is inconsistent with people’s subjec-
tive feelings in some cases. But in Table 7 and Table 8, we can observe that
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Table 2. SSIM and PSNR scores on “Apple2Orange” dataset.(200 epochs)

Model
SSIM PSNR(dB)

consistent-apple consistent-orange consistent-apple consistent-orange

Ours 0.8029 0.7503 19.266 17.068

Ours (with tedge) 0.7535 0.7021 16.764 15.582

CycleGAN 0.7329 0.6927 19.035 17.985

CycleGAN-Skip 0.7412 0.7061 18.654 17.743

Unit 0.6948 0.6705 18.449 18.297

Disco 0.4403 0.4107 13.424 14.462

Table 3. SSIM and PSNR scores on “Summer2Winter” dataset.(200 epochs)

Model
SSIM PSNR(dB)

consistent-summer consistent-winter consistent-summer consistent-winter

Ours 0.8410 0.8318 21.267 20.622

Ours (with tedge) 0.8059 0.8089 19.433 19.314

CycleGAN 0.7842 0.7911 20.259 20.013

CycleGAN-Skip 0.7726 0.7850 19.903 20.054

Unit 0.7025 0.7188 19.031 18.878

Disco 0.6688 0.6699 18.765 18.124

Table 4. SSIM and PSNR scores on “Blond-hair2Brown-hair” dataset.(200 epochs)

Model
SSIM PSNR(dB)

consistent-blond consistent-brown consistent-blond consistent-brown

Ours 0.8682 0.8903 24.679 24.744

Ours (with tedge) 0.8189 0.8283 22.188 20.731

CycleGAN 0.8222 0.8554 22.799 23.553

CycleGAN-Skip 0.6821 0.6910 17.028 16.206

Unit 0.7889 0.8046 22.521 22.583

Disco 0.7637 0.7924 20.539 21.248

our cycle-consistency orange image is really clearer than those of other models.
CycleGAN and CycleGAN-Skip get similar evaluation scores on “apple2orange”
and “summer2winter” datasets but have a large disparity on “blond-hair2brown-
hair” dataset, which illustrates that only adding skip-connection channel to gen-
erators cannot improve images quality greatly since transmitted data consists
of not only edge information but also color information. The transmitted color
information even have a bad perceptual effect on cycle consistent images to
cause low evaluation score. Finally, DiscoGAN obtains the lowest scores among
them on “apple2orange” and “Summer2Winter” datasets and also performs not
well on “blond-hair2brown-hair” dataset because of deeper convolution layers in
encoder without any solution to protect edge information. To summarize, our
model have achieved the highest evaluation scores and our results are visually
excellent.
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5 Conclusions

In this paper, we proposed ED-CycleGAN to improve the image quality of Cy-
cleGAN. The ED-Block extracts edge maps of input firstly to prevent edge infor-
mation from being destroyed in the encoder processing. Then two generators of
CycleGAN share the pre-trained and frozen encoder of ED-Block during train-
ing. And finally processed images are integrated with edge maps as final outputs
of generator. Our model, ED-CycleGAN, improves the image quality of gener-
ators with less time expense and get highest SSIM and PSNR scores compared
with CycleGAN, Unit and DiscoGAN.
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Input Ours CycleGAN Unit Disco

Fig. 5. Image translation results from “Apple2Orange”, “Summer2Winter” and
“Blond-hair2Brown-hair” datasets in 200 epochs. From top to bottom is apple to or-
ange, orange to apple, summer to winter, winter to summer, blond hair to brown hair
and brown hair to blond hair.
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Input Ours Ours(with tedge) CycleGAN Cycle-Skip

Fig. 6. Image translation results from “Apple2Orange”, “Summer2Winter” and
“Blond-hair2Brown-hair” dataset in 200 epochs. From top to bottom is apple to or-
ange, orange to apple, summer to winter, winter to summer, blond hair to brown hair
and brown hair to blond hair.
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Input Ours CycleGAN Unit Disco

Fig. 7. The cycle consistency images in 200 epochs of Ours, CycleGAN, Unit and
DiscoGAN. The results from our models has less artifacts and are much clearer and
more similar to input.
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Input Ours Ours (with tedge) CycleGAN Cycle-Skip

Fig. 8. The cycle consistency images in 200 epochs of Ours, Ours (with tedge), Cy-
cleGAN, and CycleGAN with skip-connection. The results from our models has less
artifacts and are much clearer and more similar to input.
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