SSA-GAN: End-to-End Time-Lapse Generation with Spatial Self-Attention

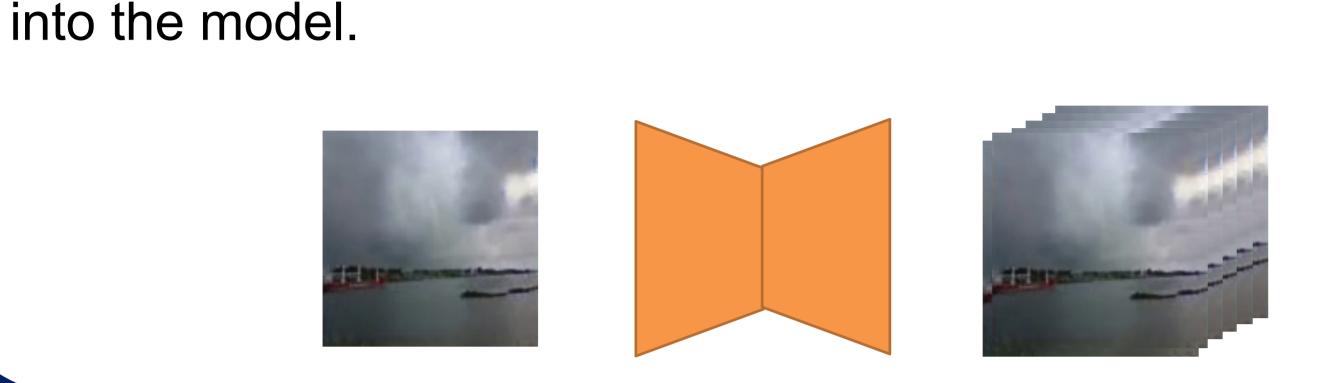
Daichi Horita, Keiji Yanai The University of Electro Communications, Tokyo, Japan

1. Introduction

- We usually predict how objects will move in the near future in our daily lives. *However, how do we predict?* To address this problem, we propose a GAN-based network to predict the near future for fluid object domains.
- Our model takes one frame and is able to predict future frames.
- We propose introducing the spatial self-attention mechanism

Demo iPad

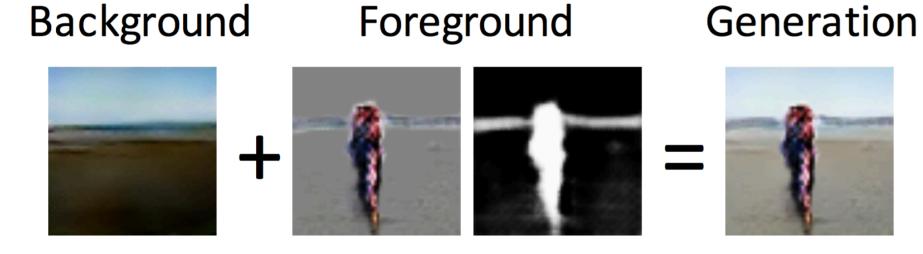
ground truth our model [2] first [2] second stage



2. Related Works

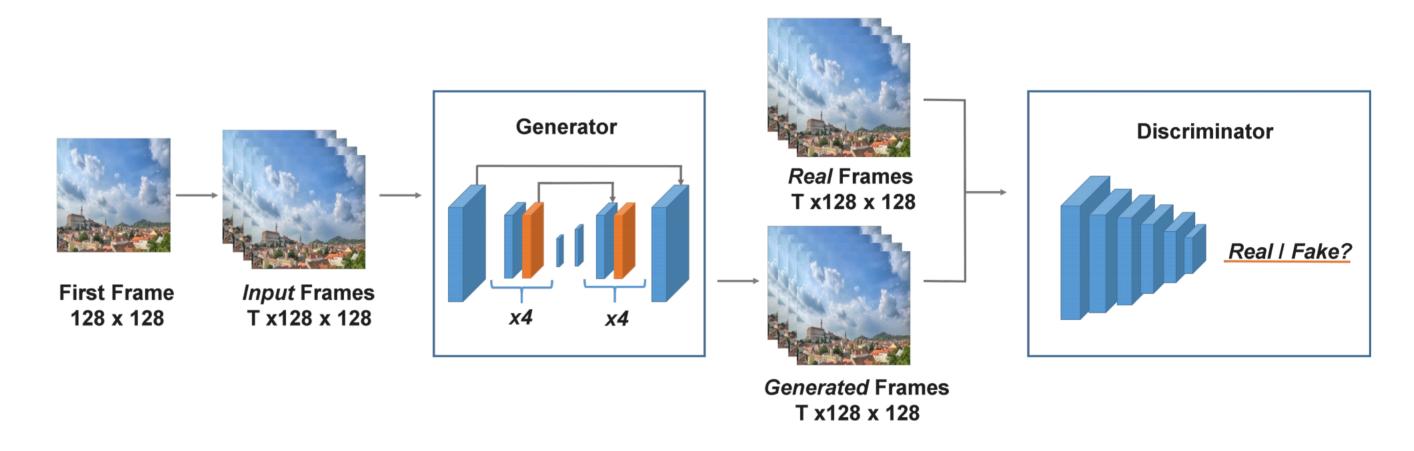
Video prediction

 Since VGAN[1] generates the background and foreground of the image separately, the background is fixed.



Propose to generate the both content at the same time.

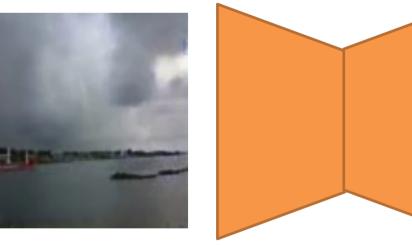
4. Method - Spatial Self-Attention GAN



(Blue) 3D convolutional/transposed convolutional layers.
(Orange) Spatial Self Attention Modules.

Objectives

• MDGAN[2] generate rough movements in the first stage and add detailed appearances and motions in the second stage.



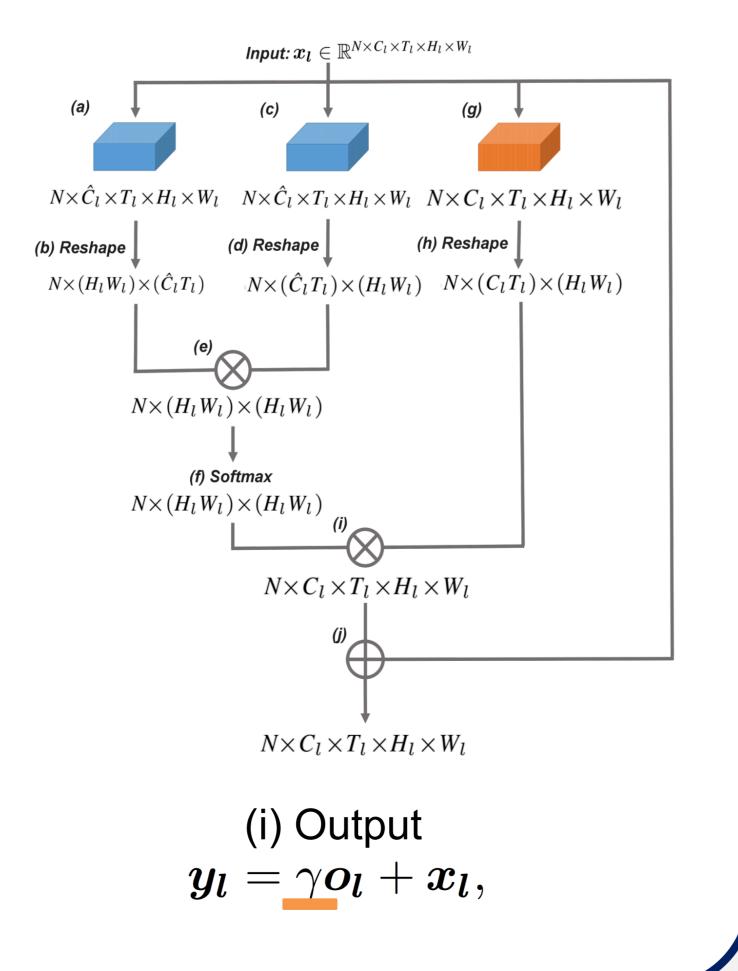
1st stage

2nd stage

Propose the model with only one-stage learning.

3. Method - Spatial Self Attention Module

 Propose a spatial self-attention module to learn the long-range dependence within a frame.



 $\begin{array}{ll} \underline{Adversarial \ Loss} & \underline{Content \ Loss} & \underline{Full \ Loss} \\ \mathcal{L}_{adv} = \min_{G} \max_{D} \mathop{E}_{Y \sim P_{r}} [\log D(Y)] + \\ & \frac{E}{\bar{X} \sim P_{g}} [\log (1 - D(\bar{X}))], \end{array} & \mathcal{L}_{con} = \mathop{E}_{Y \sim P_{r}, \bar{X} \sim P_{g}} [\|Y - \bar{X}\|], \\ & \mathcal{L}_{G} = \mathcal{L}_{adv} + \lambda_{con} \mathcal{L}_{con}, \end{array}$

5. Experiments

- 1. Quantitative evaluation
- Cloud dataset[3]

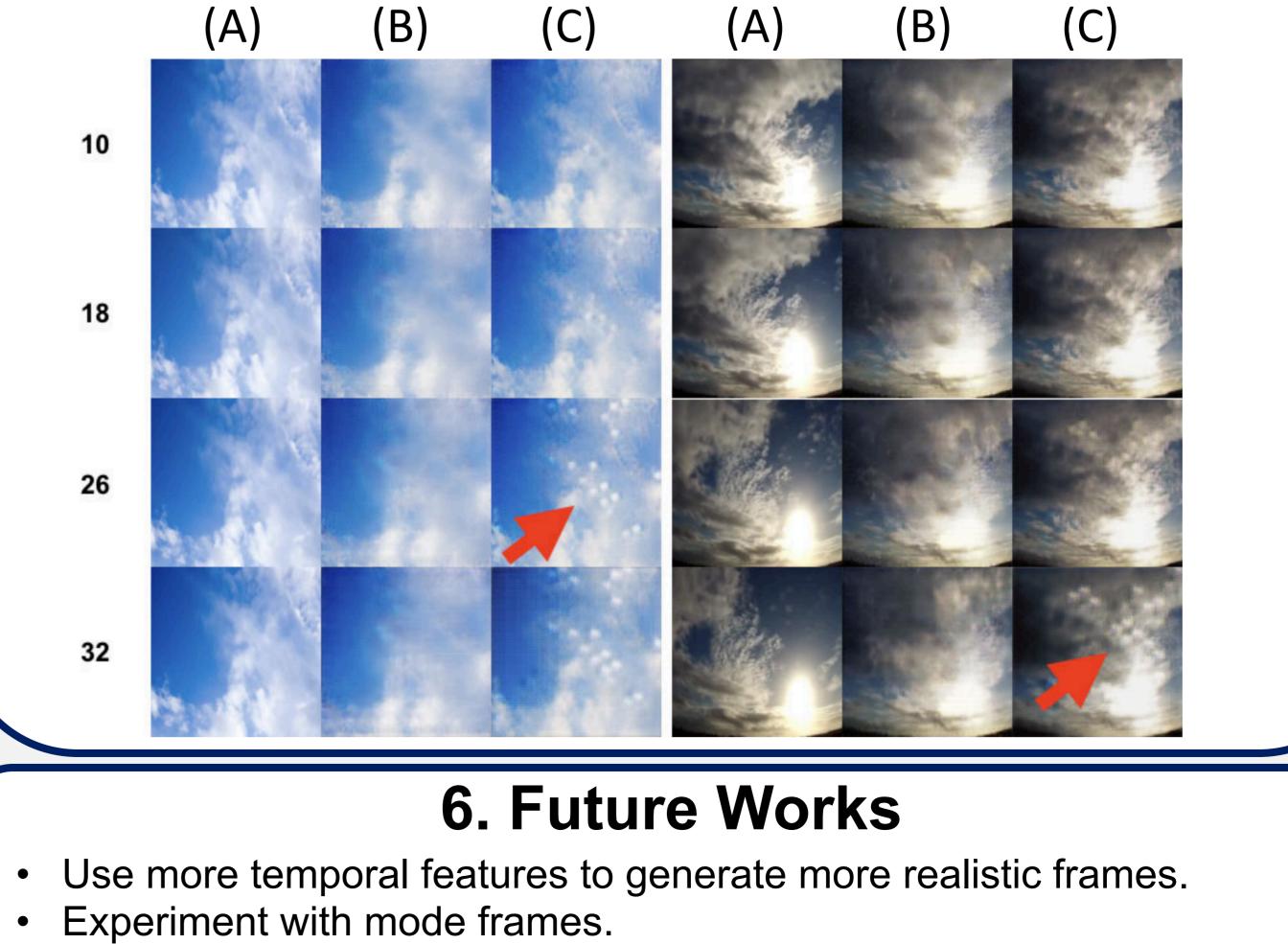
Method	MSE↓	PSNR ↑	SSIM ↑
MD-GAN Stage I	0.0970	16.9019	0.3583
MD-GAN Stage II	0.0307	22.7372	0.5920
SSA-GAN (Ours)	0.0232	24.9100	0.6805

Beach dataset[1]

Method	MSE↓	PSNR↑	$SSIM\uparrow$
RNN-GAN	0.1849	7.7988	0.5143
VGAN	0.0958	11.5586	0.6035
MD-GAN Stage II	0.0422	16.1951	0.8019
Ours (a)	0.0379	23.6601	0.7320
Ours (b)	0.0374	25.6432	0.7346

2. Ablation study

(A) Ground truth, (B) existence, (C) non existence of γ



- The network assigns more weight to areas outside the neighborhood.
- γ play the important role to avoid the over-weighting(See 5.2).

- References

[1] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics. In Proc. of Neural Information Processing Systems (NIPS), 2016.

[2] Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo. Learning to generate time-lapse videos usingmulti-stage dynamic generative adversarial networks. In Proc. of CVPR, 2018.