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Abstract. Unsupervised image-to-image translation such as CycleGAN
has received considerable attention in recent research. However, when
handling large images, the quality of generated images are not in good
quality. Progressive Growing GAN has proved that progressively growing
of GANs could generate high pixels images. However, if we simply com-
bine PG-method and CycleGAN, it must bring model collapse. In this
paper, motivated from skip connection, we propose Progressive Growing
CycleGAN (PG-Att-CycleGAN), which can stably grow the input size
of both the generator and discriminator progressively from 256 × 256 to
512× 512 and finally 1024× 1024 using the weight α. The whole process
makes generated images clearer and stabilizes training of the network.
In addition, our new generator and discriminator cannot only make the
domain transfer more natural, but also increase the stability of training
by using the attention block. Finally, through our model, we can pro-
cess high scale images with good qualities. We use VGG16 network to
evaluate domain transfer ability.

Keywords: Cycle-Consistent Generative Adversarial Networks · skip
connection · attention block · progressive growing strategy

1 Introduction

CycleGAN [1] makes a big progress in unpaired domain translation, which is
useful in industrial such as person re-identification [3] and video re-targeting [4].
Larger size pictures are appealing to all of them. With the development of the
high-tech camera, there are more and more high pixels images exited. It will be
a trend to do domain translation on large size pictures(1024× 1024pixels).

Progressive Growing GAN (PG-GAN) [5] presents progressive growing meth-
ods for GANs to process large images, but if we simply cite the progressive
growing method in CycleGAN, increasing the layers progressively. However, the
generated images are not in good quality, which is shown in Fig. 1. This is
because the span of the receptive field is enormous between the layers of Cy-
cleGAN, which will easily cause the model collapse. Shown in Fig. 1, they only
change the color of the whole images, but not the domain.

To prevent such a case, we re-design the generator, whose architecture uses
sampling to substitute the stride-2 convolution layers that are used in the original
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Input Ours CycleGAN[1] PG-CycleGAN

Fig. 1. The result of our GAN, CycleGAN[1], PG-CycleGAN (progressively growing
the layer of original CycleGAN), for translating a zebra with a size of 1024 × 1024 to
a horse and a horse to a zebra. By taking the details in the pictures, it is clear to see
our generated horse and zebra are more rounded and nature.

CycleGAN. Besides, the kernel size of the first convolution layers of generators
changes from 7 × 7 to 1 × 1 to reducing the reconstruction damage caused by
encoding and decoding. Moreover, we replace all the transpose convolution layers
with bilinear interpolation upsampling layer to erase the checkerboard effect.
From Fig. 1, the results from our model have better-translated textures when
handling the 1024× 1024 size images.

We begin training with the 256 × 256 size, and after fully trained, we dou-
ble the size to encourage on fine details. Besides, we use the attention block
that protects the high-frequency information to have a clearer image. Compar-
ing with the original CycleGAN and simply growing CycleGAN structure, we
qualitatively and quantitatively show that explicitly our new progressive model
can do well in domain translation for high pixels pictures.

2 Related Work

2.1 Cycle-Consistent Adversarial Networks

Cycle-Consistent Generative Adversarial Networks (CycleGAN) [1] introduced
by Jun-Yan Zhu et al. uses two adversarial processes with two generators and
two discriminators to realize two-way domain translation. The key to Cycle-
GAN’s success is the cycle-consistency loss, which represents cycle consistency
and guarantees that the learned function can map an individual input to a de-
sired output. The structure of the generator consists of encoders, transformers,
and decoders, which result in a serious problem: edge information will be dam-
aged in the encoding process and cannot be recovered in the decoding process.
Therefore, some parts of the generated images are blurry and indistinct. To im-
prove the image quality, we use skip-connection to connect encoder and decoder.
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Thus the architecture can prevent edge information from being damaged and
will be directly transmitted to generated image. Besides, we softly enlarge the
generator, which prevents the model collapse. These methods can get better
results compared with other models. Finally, our model based on the growing
technology can well handle the large scale images.

2.2 Skip Connection

Olaf Ronneberger et al. introduce U-Net [6] to make convolution networks could
work for bio-medical images. In terms of the high-quality images, which are
important in medical, they use the skip connection between the sampling and
upsampling layers. To increase the speed of the architecture, many structures
use the sampling to minimize the size of the processing images, which will throw
away the high-frequency information that includes the edge information. With
the help of the skip connection, the detail information directly transfers to the
upsampling layers, thus can have clearer images. We adopt the skip connection
between the encoder and decoder inside the generator. Besides, we will also
establish a new skip connection with the network growing. Though the network
is much deeper, it will still have good quality in generated pictures.

2.3 Progressive Growing of GANs

Progressive Growing of GANs (PG-GANs) [5] realizes size increase by using a
progressive growth strategy. In this training process, our model begins from a
small output size and gradually adds new layers in output end to expand size,
which is realized by weight α changing from 0 to 1. When α increases to 1 as
the training process, the new layer is completely added to the model and the
output size is expanded. Different from the PG-GAN, our model base on the
image input-output structure. Motivated by this progressive growing strategy,
we also use weight α to linearly add new layers in both input end and output end
to increase image size. Besides, we also increase the size of the discriminator, to
prevent model collapse caused by the situation when the discriminator is over
trained.

2.4 Artifact

Youssef A. et al. introduce Attention CycleGAN [7] to protect the background
information in datasets like horse2zebra and summer2winter. Using the atten-
tion block that only focuses on the domain part, which won’t do superfluous
translation on the background. Odena et al. [8] discover the checkerboard effect
in image processing, which is caused by transpose convolution layers. In this
model, we not only present an alternative attention block to keep the milieu but
also choose upsampling layers instead of transpose convolution layers to solve
the checkerboard effect.
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Input CycleGAN deeper CycleGAN Ours

Fig. 2. The result of CycleGAN, deeper CycleGAN(CycleGAN has more layers to
deepen the network), our model for translating the picture from winter to summer

3 Proposed Method

Image translation that aims to learn mapping function from source domain to
target domain with two sets of independent data, is realized by an Image Trans-
form Net[9]. Style change effect can be improved with more encoder and decoder
layers, but the reconstruction loss will increase due to the downsampling process
in encoder. Shown in Fig. 2, the deeper CycleGAN can change the color of the
tree, while it also causes the sky distorted. To solve this problem, we combine
the progressive growth strategy with CycleGAN to propose a new architecture,
which can smoothly add new layers to generators after adequate training. Fig. 3
visualizes this process.

3.1 Network Structure

Base Structure of Generator In the generator, the first layer named from-
RGB is a convolution layer with 1 × 1 kernel size adopted from PG-GAN[5],
which has a good performance on generating high-quality images. The archi-
tecture of encoder is adopted from Image Transform Net[9] consisting of two
sampling blocks including two 1-stride convolution layers followed by Instance
normalization[10] and ReLU, average sampling to shrink images. Same as CycleGAN[1],
we use nine residual blocks as the transformer part. Besides, before the trans-
former part, a skip-connection with weight transmits data skipping the trans-
former to decoder. For the decoder part, motivated by Stack GAN[11], we choose
two bilinear interpolation upsampling layers integrated with two 1-stride convo-
lution layers to expand image size instead of transpose convolution. Moreover,
the input of the second upsampling layer is the integration of output from the
last layer and data from the first convolution layer in encoder transmitted by a
tunnel. Finally, the output is fed in a 1× 1 convolution layer named toRGB to
reduce the dimension back to the RGB image.

Base Structure of Discriminator We use three 2-stride convolution layers
followed by Instance Normalization and LeakyReLU to make quick judgments,
which is inspired by FCN[12]. Due to the flexibility of FCN, we can easily add
layers to achieve a progressively growing effect.
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Fig. 3. When growing the layers of the encoder of the generator (G-E), the decorder
of the generator (G-D) and discriminator (D), we fade in the new layers smoothly.
This example illustrates the translation of the deepening parts, (a) to (c). During the
transition (b), we grow α linearly from 0 to 1. fromRGB represents RGB to feature
vectors, using the 1 × 1 convolution layers. toRGB is feature vectors to RGB. Conv
means 2 stride-1 3 × 3-convolution layers. Dconv is a stride-2 3 × 3-convolution layer.
When training the discriminator, we feed in real images that are downsampled to
increase the judgement on semantic information

3.2 Progressive Growing Strategy

We adopted the progressive growing method of PG-GAN and modified it to
suit the encoder-decoder style since the PG-GAN only generates images from
random noise of 1× 512 codes. The progressively added layers method is shown
in Fig.3. When the network has been trained after adequate training epochs, the
progressive growing stage will begin. Firstly, the input image size needs to be
enlarged from the original 256×256 to 512×512. Since we softly add the layer, we
use two ways to gradually shade, shown in Fig. 3. For the original round, there
will be a new pooling layer before fromRGB to adjust the size because it can only
accept 256×256 images. For the other way, the growing layers, which consists of
a fromRGB layer of 512× 512 and two 1-stride convolution layers with average
sampling, will be gradually added to the well-trained structure. There are two
weights α and 1− α working on growing layers and original layers separately.
With α growing from 0 to 1, the original way will be gradually abandoned and
adding layers will progressively integrated well with other parts of this network
and a new architecture will be completed. In the decoder part, the process is
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similar to that in the encoder. Due to the above idea, our method has great
training stability.

3.3 Attention Block

Our attention block aims to find the target domain part and the source port in
the pictures. If we add layers into the attention block with the training growing,
it will destroy the well-trained attention block, which will need to train again in
turn. On the contrary, we keep input 256×256 size images, using bicubic [13] to
increase the size to maintain the stability. Like Wang et al’s work [14], we use
residual units in our network to increase the accuracy of an attention block.

3.4 Training

The work of domain translation is using a generator Gst that translates input
image s from a source domain into s’ in target domain which is based on a
possibility of P t. At first, we use an attention network As, which can locate the
source domain part in the images. For the output of the As, it is an attention
map with per-pixel [0, 1], allowing the network to learn how to compose edges.
After the attention block, we can get an image only with the domain part As(s)
and an image only with the background 1-As(s), and the other part is just pixels
with zero value. Finally, we put the domain part inside the generation and can
get the target domain image. We use ’�’ to represent the element-wise product.
Thus, the mapping from the source domain to the target domain is:

s′ = (1−As(s))� s + As(s)�Gst(s) (1)

We use the progressively growing method to deepen the network, which can
handle the large scale images. Before adding a new layer, the model should be
fully trained. Through a lot of experiments, we observed that after 100 epochs,
it would change a little in the original model. Therefore, after 100 epochs, we
will grow the layers in the generation and attention block. We use the Gstnew

to represent the latest generation and use A*s (we do not change the attention
block after 30 epochs) as the latest attention block. Using α as weight in progress.
The progressively mapping is:

s′ = (1 − A ∗s (s)) � s + (αGstnew + (1 − α)Gst)(A ∗s (s) � s) (2)

We use F st and F ts to represent the domain translating. D t and Ds present
the process of discriminators. So the adversarial loss function can be shown as:

Ls
adv(Fst,As,Ds) = Et∼Pt(t)[logDt(t)] + Es∼Ps(s)[log 1−Dt(s

′)] (3)

In addition, we enforce network by using cycle consistency loss: calculate the
difference between original image s and inverse mapping image s”, which is s
transferred back to original domain by F st and F ts. This process is shown below:

Ls
cyc(s, s

′′) = ||s − s ′′||1 (4)
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The cycle consistency loss can further reduce the space of possible mapping
functions and increase the attention block. Finally, we combine the attention
loss and cycle consistency as:

L(Fst,Fts,As,At,Ds,Dt) = Ls
adv + Lt

adv + λ(Ls
cyc + Lt

cyc)) (5)

The optimal parameters of λ e obtained by solving the minimax optimization
problem:

F*st,F*ts,A*s,A*t,D*s,D*t = argmin
Fst,Fts,As,At

(argmax
Ds,Dt

L(Fst,Fts,As,At,Ds,Dt)) (6)

For discriminator. At first, the attention block is not precise enough if we just
focus on the target part, which will cause the model collapse by combining the
information of the background, e.g., in the horse2zebra is the living condition of
zebra. To overcome this problem, we train the discriminator with the full image
before the first 30 epochs and switch to only the attention part after attention
block has developed.

Unpaired image translation generate the pictures will also influenced by the
background. Unlike traditional attention block, we should make the boundary
sharper to decrease the influence of background. We calculate the attention map
as follows:

tnew =

{
t if At(t) > τ
0 otherwise

(7)

s′new =

{
Fst(s) if As(s) > τ

0 otherwise
(8)

tnew and s’new are masked versions of target sample t and translated source
sample s’, which only contain pixels exceeding a user-defined attention threshold
τ , which we set to 0.1.

Finally, we update the adversarial loss L of Equation (3) to:

Ls
sdv(Fst,As,Dt) = Et∼Pt(t)[logDt(tnew)] + Es∼Ps(s)[log 1−Dt(s

′
new)] (9)

When optimizing the objective in Equation (8) beyond 30 epochs, real image
inputs to the discriminator is now also dependent on the learned attention maps.
This can lead the model to collapse if the training is not performed carefully.
For instance, if the mask returned by the attention network is always zero.

Ls
sdv(FstDt) = Et∼Pt(t)[logDt(t)] + Es∼Ps(s)[log 1−Dt(s

′)))] (10)

Our model is based on the circulation from source domain to target domain,
and back. Which is shown as φs → φst → φsts, so the cycle consistency is same
as function(4). To combine them, the full object is:

L(Fst,Fts,Ds,Dt) = Ls
adv + Lt

adv + λ(Ls
cyc + Lt

cyc) (11)
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The solution is similar to the model with attention block, just without the
attention part, which is :

F*st,F*ts,D*s,D*t = argmin(
F*st,F*ts

argmax
D*s,D*t

L(F*st,F*ts,D*s,D*t) (12)

4 Experiments

4.1 Training setting

We use the ‘Apple to Orange’ (A2O) and ‘Horse to Zebra’ (H2Z) datasets pro-
vided by Jun-Yan Zhu et al.[1] to train our model with attention block since
such images have exact foreground object. For our model without attention
block, we choose the datasets celeba datasets HD from Tero Karras et al.[5],
summer2winter(Yosemite) and monet2photo, which are also from CycleGan[1].

We adopt CycleGAN’s notation [1], “c3s1-k -R” denotes a 3*3 convolution
with stride 1 and k filters, followed by a ReLU activation (‘R’), while Leaky ReLU
activation with slope 0.2 (’LR’). “ap” denotes an average pooling layer halving
the input layer. “rk” denotes a residual block formed by two 3*3 convolutions
with k filters, stride 1 and a ReLU activation. “up” denotes a upsampling layer
doubling the heights and widths of its input. A Sigmoid activation is indicated
by ‘S’ and ‘tanh’ by ‘T’. We apply Instance Normalization after all layers apart
from the last layer.

Final generator architecture is: c1s1-32-R, c3s1-64-R, c3s1-64-R, ap, c3s1-64-
R, c3s1-64-R, ap, c3s1-128-R, c3s1-128-R, ap, r128, r128, r128,r128, r128, r128,
r128, r128, r128, up, c3s1-64-LR, c3s1-64-LR, up, c3s1-32-LR, c3s1-32-LR,up,
c3s1-32-LR, c3s1-32-LR, c1s1-3-T.

Attention block architecture is: c7s1-32-R,c3s2-64-R, r64, up, c3s1-64-R, up, c3s1-
32-R, c7s1-1-S.

Final discriminator architecture is: c3s1-64-LR, c4s2-32-LR,,c4s2-64-LR, c4s2-
128-LR, c4s2-256-LR, c4s1-512-LR, c4s1-1

Similar to CycleGAN, we use the Adam solver with a batch size of 1. All
networks were trained from scratch with a learning rate of 0.0002. We keep the
same learning rate for the 200 epochs. Weights are initialized from a Gaussian
distribution N (0,0.02). Layers are added in 140, 170 epochs.

4.2 PG-Method and Attention block

Observing the Fig. 5, we can see that the generated images are getting more
and more fine details through training, which means our progressively growing
method work. When it in step1, there are only limited strips on the generated
zebras, but as the step grows, the strips are getting more and more. Finally,
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Fig. 4. Translation results. From top to bottom. zebra to horse, horse to zebra, apple
to orange, summer to winter, winter to summer, Monet to picture and blond to brown.
For the first three translations, our results are generated with attention block, and for
the last four translation, attention block is not used.

Input step1 step2 final

Fig. 5. Domain translation for generating a zebra images by a horse image. Results of
step1(fully trained with 256×256 size images, which is same as CycleGAN), step2(fully
trained with 512× 512 images), and step3(fully trained with 1024× 1024 pictures, the
model already finished growing). With the layers growing, some fine details are added.
The strips of generated zebra is adding with the step increasing.

all the generated zebras are covered with strips, which makes them really like
zebras.

The function of the attention block is to tract the domain part in the image,
which will protect the background information while in translation. In Fig. 6,
looking at the attention maps (the grey images), each of them can accurately find
the source domain. As a result, shown in the photos after the attention block, the
generated pictures will have the same background as the original images have.

4.3 Baselines

Nowadays, there are many famous GANs performing well in domain transfer-
ring using different loss. CycleGAN [1] with least-squared GAN[16] loss and
DiscoGAN [15] with Standard loss[17] use a circulation to train adversarial net-
work. Dual GAN[19] uses Wasserstein GAN loss [18] to solve the model collapse.
To prove our model really work well on high pixels images, we compare our
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Fig. 6. Results of attention block for zebra to horse and horse to zebra domain transla-
tion of four group. The order inside each group is input image, generated image without
attention map, attention map and generated image with attention map. The attention
block can correctly tract the domain part inside the images.

Table 1. VGG perception for each model

Model H2Z Z2H A2O O2A M2P P2M

VGG(accuracy) 0.99 0.99 0.96 0.96 0.98 0.98
Ours 0.78 0.94 0.84 0.83 0.84 0.27
CycleGAN 0.82 0.90 0.77 0.87 0.83 0.11
PG CycleGAN 0.75 0.65 0.62 0.59 0.72 0.09
Disco GAN 0.63 0.19 0.80 0.19 0.74 0.35
a Higher scores mean better model.
b H (horse),Z(zebra),A(apple),O(orange),M(monet), P(photo)

model with CycleGAN[1], CycleGAN[1] with progressively growing method[5]
and DiscoGAN [15] on 1024× 1024 images.

4.4 Qualitative Results and Quantitative Results

Fig. 4 shows the results of Horse2zebra, Apple2Orange, Summer2Winter, Monet2Photo,
and blond2brown datasets. Although CycleGAN has a strong ability in domain
transfer, the background will be changed by trained mapping function due to
loss function, which is based on whole the image. Moreover, when we zoom in the
image from CycleGAN, obvious checkerboard artifact resulted from transposed
convolution layers can be observed. The simple combination of PG-GAN and
CycleGAN do not have good performance. Because the receptive field changes a
lot when new layers are added, the model collapsed is easier to occur. DiscoGAN
focuses on the relationship between two domains, but can only realize unidirec-
tional domain translation, such as horse2zebra in Fig.4. By incorporating the
progressive growing strategy, attention block and replacing transpose convolu-
tion with bilinear interpolation upsampling, our results have less checkerboard
effect, more natural background and stronger ability of domain transfer. Our
model successfully makes output more realistic compared with other models and
manages to solve the checkerboard artifacts.

We use the VGG-16 network [19] to quantitatively evaluate the authenticity
of our generated images. VGG-16 is a classical model in Image Identification.
Comparing with AlexNet [20], VGG-16 used stacked small convolution kernels
increasing the depth of the network with fewer parameters. We prepare a unique
VGG-16 network for each datasets, expect winter2summer that VGG-16 only
has 70% accuracy. For the training datasets are the same with the datasets
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we used in domain translation. As we wanted our domain translation is more
natural, which means our results should have a higher grade in VGG-16 network.
Therefore, we calculate the accuracy of each dataset in table 1, where we also
list the accuracy of VGG-16 network for test images.

Our approach reaches the highest score in most domain translation, while
the CycleGAN is the second, which means it does well in domain translating.
Although PG CycleGAN uses the progressive growing method, it is third one
of all, because the model is not stable enough, then adding layer will always
just learn to change the color instead of the domain translation. Because of the
loss function used by DiscoGAN, it can reach good results in one direction do-
main translation. Finally, comparing with these GANs, it is obvious that our
model deepens the understanding of the semantic information through progres-
sive training and enhances the vision of the attention block.

5 Conclusion

Simply combination of a progressively growing method with CycleGAN will
easily cause model collapse. In this paper, we present a more stable GAN–PG-
Att-CycleGAN. The architecture trains an adversarial network gradually with
the help of attention block, and fix the generator to reach the goal. Our method
can greatly reduce the damage of the deep layer to the spatial information.
Besides, with the help of the increased number of layers and skip connection, we
can generate images with more natural textures.
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Input Ours CycleGAN PG-CycleGAN Disco

Fig. 7. Translation results. From top to bottom. horse to zebra, zebra to horse, orange
to apple, apple to orange, picture to monet, monet to picturen. For the first five transla-
tions, our results are generated with attention block, and for the last three translation,
attention block is not used.
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Fig. 8. Translation results. From top to bottom. winter to summer, summer to winter,
blond hair to brown hair, brown hair to blond hair. Attention Block is not used.
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