Predicting Segmentation "Easiness" from the Consistency for Weakly-Supervised Segmentation

Wataru Shimoda and Keiji Yanai The University of Electro-Communications, Tokyo, Japan

Objective

Proposed Method

Weakly supervised segmentation

- Use only image-level annotation

Weakly supervised annotation

Fully supervised annotation

First step

- Obtain segmentation mask by existing weakly supervised segmentation method.

Second step

- Mine better results by our proposed method

Third step

- Train full supervised segmentation model with mined supervision

Weakly supervised segmentation

Contributions

- Improved the method by Simonyan et al. [1] greatly
- Achieved state-of-the-art in weakly-supervised segmentation with PASCAL VOC 2012

Background

Distinct class specific saliency map (DCSM) [ECCV 2016]

- Visualization using subtraction for class specific map
- Improved method of Simonyan et al. [ICLRWS 2014]
- The method adapts visualization for multi class objects.
- Achieved high score on weakly supervised segmentation.
- Simple to complex(STC) [PAMI 2016]
- Calculate seed area in advance
- Train full supervised model with the seed
- Repeat this process. (Self-pased learning) Kind of EM-algorithm -> initialization is crucial.

[Shimoda et al. ECCV 2016]

Experiments

Top5 retrieval results obtained by our proposed method on Pascal VOC 2012 dataset

- Most of mined segmentation seeds are close to the ground truth.
- The results of sofa, chair and table include some noise. In general segmentation results of these class show low performance, hence the retrieved results are affected by the low

Estimating "Easiness"

Reason of fault of segmentation using visualization

- Accuracy of classification
- Various object size
- Gap between the classification task and the segmentation task
- Estimation of "Easiness" using consistency $R_{sub}(x) = \frac{1}{|\mathcal{C}|} \sum_{x \in \mathcal{C}} IoU(V_o^c(x), V_w^c(x))$ (1)Consistency of visualization
- The subtraction on DCSM generates clear class specific maps.
- We used defference between
 - visualization with subtraction and witout subtraction
- This takes into account the classification result and image complexity.

(2) Consistency of receptive field $R_{size}(x) = \frac{1}{2|\mathcal{C}|} \sum_{i=1}^{I} IoU(V_o^b(x), V_o^c(x)) + IoU(V_w^b(x), V_w^c(x))$

- On the inference of pixel surrounding pixel information is very important.
- The receptive field size is related to the segmentation accuracy strongly.

quality of prediction directly

Pascal VOC 2012 validation set

Comnbination of "Easiness" with data augmentation

Table 1. Complination of "Easiness" with data augmentation

setting	Base image N	Aug image N	mIoU
(a)	$8760 (th \ge 0.3)$	$730 (\text{th} \ge 0.8)$	50.1
(b)	10582 (all)	730 (th≥0.8)	48.9
(c)	$8760 (th \ge 0.3)$	$2105 (th \ge 0.7)$	51.3
(d)	10582 (all)	2105 (th≥0.7)	49.9
(e)	$8760 (th \ge 0.3)$	$8760 (th \ge 0.3)$	49.7
(f)	10582 (all)	10582 (all)	48.8
	- Lila		

Result on Pascal VOC 2012 test set

Full supervised	Year	Acc
O2P	2012	47.6
SDS	2014	52.6
Deeplab	2015	71.6

method	Year	Acc
Using additional annotations		
Point annotation	2016	46.0
Video	2017	58.7
Using only the image level label		
Global pooling	2015	24.9
Simonyan (Backward)	2014	33.8
Ours (Backward)	2016	45.1
STC (re-training)	2016	51.2
SEC (re-training +	2016	51.7
Ours (Backward + re-training)	2017	52.8
Adversarial Frasing	2017	55.7
Auversaliai Liasilig		55.7

- We used the change of receptive field on difference of input image

Conclusion

Trade off exists between the number of training data and quality of training data. The segmentation accuracy can be boost by data selection with data augmentation.

*We used the same network architecture with deeplab model for training full supervised model.