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Abstract

Weakly-supervised segmentation has come to draw a lot
of attention, since it costs very high to create pixel-wise an-
notated image datasets for fully-supervised segmentation.
Recently, it has achived great progress by the method of
(re-)training of a fully-supervised segmentation model with
roughly estimated inital masks which is proposed by Wei et
al. [25]. However, the initial estimated masks tend to in-
clude some noise, which sometimes causes erroneous re-
sults. Therefore in this paper we focus on improving of
quality of initial estimated masks for (re-)training of a fully-
supervised segmentation model. We propose a novel algo-
rithm to retrieve “good seeds” by predicting segmentation
“Easiness” of images based on consistency among the out-
puts with different conditions. We show that there is a trade-
off between training data quality and the number of selected
images, and our proposed method can improved the trained
model using data augmentation. We have achieved state-
of-the-art in a weakly-supervised segmentation setting on
Pascal VOC 2012 segmentation benchmark dataset.

1. Introduction
Due to recent progress of convolutional neural network

(CNN), the accuracy of semantic segmentation has been

much improved, especially in fully-supervised semantic

segmentation which requires pixel-wise annotation as train-

ing data. However, pixel-wise annotation is very costly to

obtain in general. On the other hand, collecting images with

image-level annotation is much easier than those with pixel-

level annotation, since many images attached with tags are

available on hand-crafted open image datasets such as Im-

ageNet as well as on the Web. Thus, weakly-supervised

semantic segmentation which requires not pixel-wise anno-

tation nor bounding box annotation but only image-level

annotation has been explored actively. Before the CNN

era, the performance of weakly-supervised semantic seg-

mentation was too low to regard it as being practical ap-

proaches. CNN changed such situation greatly. Some re-

cent methods [25, 10] achieved more than 50% as IoU ac-

curacy for PASCAL 2012 dataset, which has outperformed

the performance of fully-supervised semantic segmentation

methods [2] proposed in 2014 which used training data with

pixel-wise annotation. As CNN-based methods on weakly

supervised semantic segmentation which employs the local-

ization ability of CNN for target objects, there exist a feed-

forward based method and a backward based method. As

a different approach from them, in 2016, Wei et al. [25]

proposed iterative training of CNN-based fully-supervised

segmentation models for weakly supervised segmentation.

In the first step, they estimated object regions for easier

training images using a method on unsupervised saliency

map estimation. Then, they trained state-of-the-art fully-

supervised model, DeepLab [4], with training images and

object masks estimated by saliency maps. After the second

step, they re-estimated object masks with the supervised

segmentation model trained in the previous step for more

diverse training images including more complex ones, and

(re)-trained DeepLab again with the estimated masks. They

showed that repeating estimation and training like EM algo-

rithm helped create more robust segmentation CNN model

which has tolerance to noise in pseudo-pixel-wise training

data consisting of image-level-annotated images and artifi-

cially generated segmentation masks. Their method proved

that state-of-the-art fully-supervised methods with pseudo-

pixel-wise training samples worked as capable weakly-

supervised segmentation methods which sometimes outper-

formed the existing state-of-the-art methods. This is a kind

of a break-through in weakly-supervised semantic segmen-

tation.

At present, the difference on segmentation perfor-

mance between state-of-the-art fully-supervised methods

and weakly-supervised methods is still about 20% regard-

ing the PASCAL 2012 dataset. This comes from erroneous

segmentation masks estimated by saliency maps or trained

CNNs. Especially, noise in the initial seeds affects quality

of final results greatly. From this observation, we think it is

the most important to obtain better initial seeds for better fi-

nal results. Therefore, in this paper, we focus on improving
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a method to produce initial seeds.

In this paper, we propose a novel algorithm to estimate

the accuracy of weakly supervised segmentation results

with unsupervised approach and retrieved “good seeds” by

the evaluation. For the accuracy estimation of segmenta-

tion, we consider “consistency” among the results with dif-

ferent conditions. To do that, we use two kinds of weakly-

supervised segmentation method, a back-propagation-based

region mask estimation method proposed by Simonyan et

al [22] and an improved method proposed by Shimoda et

al [21]. By evaluating the consistency between the results

by the two methods, we estimate segmenation “Easiness” of

each of training image, select the easier ones as “seed im-

ages” and regards their estimated masks as “seed masks”.

In addition, it is also effective to introduce data augmenta-

tion to make seed images more various after selecting seed

images.

To summarize our contributions in this paper, they are as

follows:

• We propose a novel algorithm to estimate “Easiness”

by consistency among results of different conditions.

• We show that the retrieved images by our proposed

method is effective for data augmentation.

• We achieved state-of-the-art on the Pascal VOC 2012

benchmark dataset in the weakly supervised settings

without additional supervision nor additional training

samples.

2. Related Work
As CNN-based weakly-supervised semantic segmenta-

tion methods, three approaches exists.

1. Feed-forward based method. Feature map activations

are used for estimating target object regions.

2. Backward based method. Back-propagation to the in-

put image can estimate rough object regions, which

was originally proposed as a visualization method of

CNNs by Simonyan et al [22].

3. EM-like method employing a fully-supervised

method. Alternate iteration of segmentation mask

estimation and (re-)training of a fully-supervised

segmentation method enables a weakly-supervised

segmentation with a fully-supervised method.

2.1. Feed-Forward Based Methods

Sermanet et al [20] proposed fully convolutional net-

works (FCN) which accept input images of arbitrary sizes

by replacing fully-connected layers with convolutional lay-

ers. A FCN generates object heatmaps which indicate rough

object regions. Oquab et al.[14] proposed to use Global

Max Pooling (GMP) in the last layer to allow input images

of arbitrary sizes to be used even in training time, which

improved accuracy of weakly-supervised object localiza-

tion. After that, some derived methods employing GMP

were proposed by Pinheiro et al. [18] and Zhou et al.[26].

2.2. Backward-Based Methods

Simonyan et al. [22] showed that object segmentation

without pixel-wise training data can be done by using back-

propagation processing. Springenberg et al. [23] also pro-

posed a method for object localization by back-propagating

the derivatives of a maximum loss value of the object de-

tected in the feed-forward computation. Jianming et al. [9]

showed that their method outperformed feed-forward-based

methods employing Global Average/Max Pooling, while

Shimoda et al. [21] achieved the state-of-the-art results

in weakly supervised semantic segmentation for the PAS-

CAL2012 dataset except for iterative methods by using es-

timated class maps as prior of dense CRF.

2.3. EM-Like Methods Employing Fully-
Supervised Methods

Pathak et al. [17, 16] and Papandreou et al. [15] pro-

posed weakly-supervised semantic segmentation by adapt-

ing CNN models for fully-supervised segmentation to

weakly-supervised segmentation. Both CCNN and EM-

adopt generated pseudo-pixel-level labels from image-level

labels using constraints and EM algorithms to train FCN

and DeepLab which were originally proposed for fully su-

pervised segmentation, respectively. Both showed Dense

CRF [11] were helpful to boost segmentation performance

even in the weakly supervised setting.

Recently Wei et al.[25] proposed iterative process of

region mask estimation and (re)-training CNN by chang-

ing training samples from easy images to complex images.

They showed that their methods achieved around 50% mean

IoU at the PASCAL VOC 2012 dataset for the first time,

which was almost equivalent to the performance of fully

supervised methods proposed several years ago, although

this method used 41,625 extra training images in addi-

tion to the commonly-used augmented Pascal VOC training

dataset [6]. After that, Kolesnikov et al. [10] achieved ro-

bust seed generation by using Global Average Pooling [26].

Though most of weakly supervised segmentation meth-

ods use correlation of the different task ”Classification”

and ”Segmentation”, some recent weakly-supervised ap-

proaches achieved boosting accuracy by additional super-

vision signals. Chen et al.[15] proposed to use bounding

box annotation for weakly-supervised semantic segmenta-

tion, which can be regarded as being less costly than pixel-

wise annotation but still costly than only image-level an-

notation. As cheaper additional annotation, point annota-

tion [1] and checking generated initial masks by crowd-

2



sourcing [19] were proposed, which utilized minimal ad-

ditional supervision by human. Tokmakov et al. [24] pro-

posed to use motion segmentation of videos as additional

training information for weakly supervised segmentation.

On the other hand, SEC [10] showed a high performance

with only unsupervised techniques of loss function for neu-

ral network. The research for the unsupervised approach

will be worth for the further weakly supervised segmen-

tation research progress. We consider that human some-

times makes decision from consistency of the observations

for the ambiguous problem. Actually, the decision by ma-

jority is widely used in real world. In this paper, we ex-

plored a weakly-supervised way without additional supervi-

sion nor additional training samples and estimated priority

of weakly supervised segmentation result from consistency

and retrieved “good seeds”.

3. Method
In this paper, we basically adopt iterative approach of

mask estimation and training of fully-supervised semantic

segmentation model in the similar way to [25, 10] for the

weakly-supervised semantic segmentation tasks. To esti-

mate initial masks which need training of a fully-supervised

model in the weakly-supervise task, we use Distinct Class-

specific Saliency Maps (DCSM) proposed by Shimoda et

al. [21] which achieved the state-of-the-art in the PASCAL

VOC 2012 dataset except for iterative methods. In this pa-

per, in order to obtain better initial masks, we pay attention

on “ consistency” among the results of different processing

for selecting “good seeds”.

3.1. Estimation of “Easiness” of Training Images

We estimate “Easiness” of training images at first. We

paid attention to the following two points:

1. Correlation on “Easiness” between classification and

segmentation.

2. Coherence on the segmentation results between one

obtained by a sophisticated method and one obtained

by a simpler method.

From the two assumptions, we select easier images from

the training dataset, and give priority to them in the initial

training phase.

3.1.1 Difference between DCSM and DCSM without
subtraction

It is easy to imagine that the images to be classified is hard

to be segmented. However, the easy-classified images are

not always easy for segmentation. Therefore it is difficult to

estimate “Easiness” on segmentation directly from classifi-

cation results. Thus, in this paper, we utilize the BP-based

object-specific saliency map estimation, DCSM [21].

In the method proposed by Simonyan et al. [22], their

class saliency maps are relatively vague and not distinct. In

addition, when different kinds of target objects are included

in the image, the maps tend to respond to all the object re-

gions. To resolve the weaknesses of their method, Shimoda

et al. [21] proposed a method, DCSM, to generate more dis-

tinct class saliency maps which discriminate the regions of a

target class from the regions of the other classes by subtract-

ing saliency maps of the other classes from saliency maps

of the target class to differentiate target objects from other

objects.

Here, we think about the difference between the original

DCSM and the DCSM without subtraction. If no difference

appears in both results, the input images can be regarded as

being simple images containing single kinds of objects. On

the other hand, if both results are largely different, the input

images can be regarded as being complex images containing

multiple kinds of images.

For image x, let Vo(x) be segmentation result without

subtraction, Vw(x) be segmentation result with subtraction.

“Easiness” for subtraction Rsub(x) is calculated as:

Rsub(x) =
1

|C|
∑

c∈C
IoU(V c

o (x), V
c
w(x)) (1)

where IoU(., .) is a function which returns the Intersection

over Union (IoU) for two regions, C is the set for the differ-

ence input image sizes.

3.1.2 Coherence on size change of input images

As additional measurements on “Easiness”, we also think

coherence of the estimated DCSM maps when varying the

size of input images. If the coherence is kept widely in

terms of size change, the given images can be regarded

as being simpler than the images the results of which are

changed for size change. In this paper, we use this as the

second evaluation measure of “Easiness” of training im-

ages.

In the experiments, we used the three sizes, sn =
320, 416, 512(n = 0, 1, 2). We represent DCSM maps be-

fore adapting CRF as Msn(x). We obtain aggregated maps,

M b(x) with

M b(x) =
1

|C|
∑

c∈C
Msc(x)

V b(x) represents the CRF result of M b(x) after applying

the dense CRF-based refinement. Then, we compute the

coherence on size change, Rsize(x), by the following equa-

tion:

Rsize(x) =
1

2|C|
∑

c∈C
IoU(V b

o (x), V
c
o (x))+IoU(V b

w(x), V
c
w(x))

(2)
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Finally we combine two kinds of the reliable scores in the

following equation:

score = λ1 ·Rsize + λ2 ·Rsub (3)

where λ1 and λ2 are pre-defined constant values. In this pa-

per we simply set λ1 and λ2 to 0.5. Fig 1 shows the example

of the results of the estimated mask in different conditions.

input size 320 416 512 320 416 512

visualization

CRF result

w/o sub w/ sub

input size 320 416 512 320 416 512

visualization

CRF result

w/o sub w/ sub

input size 320 416 512 320 416 512

visualization

CRF result

w/o sub w/ sub
Figure 1. Examples of visualization on the different conditions. In
the top case, we define this sample is “good seeds” so that almost
predicted regions have consistency. In the middle case, the visu-
alization results have large difference in the simple visualization
and visualization with subtraction, hence we estimate the result of
this sample is bad for the (re-)training. In the bottom case, visu-
alization results have corresponding region, but some results have
inconsistency in the results of varying input size, thus our proposed
method generate a not good score for this sample.

3.2. Generating of segmentation mask

We generate segmentation masks of the training images

with only image-level annotation by using DCSM [21]. The

final results are obtained after applying dense CRF. On the

contrary to the original DCSM [21], we used single-class

classifier CNNs as well and we generate the final mask by

integrating single-class classifier results with the multi-class

classifier results. In case of PASCAL dataset, we train each

single-class CNNs with softmax cross entropy loss. Fig 2

shows the examples of the generated mask. Note that we

used only corresponding regions for results of different con-

ditions as the training data such like localization cue used in

[10].

Figure 2. (1)input image, (2)estimated mask by single-
class model, (3)estimated mask by multi-class model,
(4)integrated mask

4. Experiment

4.1. Dataset

We evaluated the proposed method on PASCAL VOC

2012 segmentation benchmark[5]. We followed the com-

mon practice to augment the training data provided by [6].

There are 10,582 training images, 1,449 validation images

and 1,456 test images. In this benchmark, although the

PASCAL VOC dataset contains 20 classes, we need to clas-

sify 21 classes including the background class.

4.2. Experimental setup

For the setup of both of the multi-class and single-class

classification model, we followed [21]. To train fully-

supervised segmentation model with the estimated masks

we used DeepLab-CRF model of [3]. To optimize the model

we used SGD for 10000 iteration, the batch size is 16, mo-

mentum parameter is 0.9 and a weight decay is 0.0005. We

set the learning rate to 0.001 except for the last layer which

learning rate is 0.01. We decrease the learning rate by 0.1

for 2000 iteration. Each model is trained with 7-8 hours by

a NVIDIA GeForce Titan GPU with 12GB memory. All the

experiments are conducted using DeepLab code [3], which

is implemented based on the publicly available Caffe frame-

work [8].

4.3. Evaluation for the estimation of “Easiness”

Fig 3 shows top5 retrieval results of each class obtained

by our proposed algorithm “Easiness”. Although our pro-

posed model is based on unsupervised approach, in most

cases “good seeds” are retrieved. For example, in case of

aeroplane, car, cow and dog, retrieved seeds are close to

the ground truth. On the other hand, the results of sofa,

chair and table include some noise. In general segmenta-

tion results of these class show low performance, hence the

retrieved results are affected by the low quality of prediction

directly.
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Data augmentation potential is well known as the way for

avoiding overfitting and improving accuracy on test data.

However, it is expected that augmented data including noise

will be not effective for improving accuracy. Therefore, we

augmented training data for only “good seeds” retrieved by

our proposed algorithm. As the data augmentation method,

we referred approach of Liu et al [12]. which is mentioned

on their poster in the conference. In fully supervised detec-

tion they changed training data greatly by data augmenta-

tion, then we followed their approach [12] and augmented

data by dynamic random cropping and random padding. For

cropped images, we recognized the images by the multi-

class classification model and used only the images which

results corresponding to the class label. For each training

data and each augmentation process we augmented 10 im-

ages. Table 1 shows result of combination of “Easiness”

with data augmentation, where the image number is defined

by the threshold of equation 2. Base image N represents the

image number which is used as the training data without

data augmentation, while aug image N indicates the num-

ber of image used for data augmentation. As the results,

setting (c) achieved the best accuracy 51.3 pt, this setting

limits both base training image number and augmented im-

age number. Our proposed method improved the simple ap-

proach certainly, considering result of setting (f) score is

48.8 pt which was trained with all training images and aug-

mented all images, this is the lowest score in all settings.

The table also show that training data selection for base im-

ages is effective constantly. In setting (a) and (b), in or-

der to collect the training data which has further quality, we

limited augmented number of image to 780, but we got the

worse results. In training deep CNN, the number of image

and training data quality is trade off, however, these results

indicate that the accuracy can be boost by data selection and

even though the training data size is small, quality of data is

important and can be used for the data augmentation effec-

tively.

Table 1. Comnbination of “Easiness” with data augmentation
setting Base image N Aug image N mIoU

(a) 8760 (th ≥ 0.3) 730 (th ≥ 0.8) 50.1
(b) 10582 (all) 730 (th≥0.8) 48.9
(c) 8760 (th ≥ 0.3) 2105 (th ≥ 0.7) 51.3
(d) 10582 (all) 2105 (th≥0.7) 49.9
(e) 8760 (th ≥ 0.3) 8760 (th ≥ 0.3) 49.7
(f) 10582 (all) 10582 (all) 48.8

Table 2, Table 3 show comparison with the other weakly

supervised segmentation methods. Our method achieved

state-of-the-art on the same condition using only image-

level-label as training data. Especially our proposed method

achieved better result than F/B prior[19], STC [25], SEC

[10] score which methods employ (re)-trained DeepLab

again with the estimated masks. Our approach also outper-

formed SDS [7] which is based on fully supervised method

aero bike

bird boat

bottle bus

car cat

chair cow

table dog

horse motor

person plant

sheep sofa

train tv

Figure 3. Top5 retrieval results obtained by our proposed “Easi-
ness” score on Pascal VOC 2012 train aug dataset.

Figure 4. From left to right, input image, prediction and ground
truth

proposed in 2014. We expect that our proposed method will

be well combine with some other weakly supervised tech-

niques, for example, self-paced learning [25] or seed ex-

panding and constrain approach [10], so that our proposed

approach is different from those in terms of adapting data

selection. Fig 4 shows examples of our proposed method.
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Table 2. Results on PASCAL VOC 2012 val set.
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tv m
Io

U

MIL-FCN [17] - - - - - - - - - - - - - - - - - - - - - - 25.7
EM-Adapt [15] - - - - - - - - - - - - - - - - - - - - - - 38.2

CCNN [16] - 65.9 23.8 17.6 22.8 19.4 36.2 47.3 46.9 47.0 16.3 36.1 22.2 43.2 33.7 44.9 39.8 29.9 33.4 22.2 38.8 36.3 34.5
MIL-sppxl [18] � 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6

MIL-bb [18] � 78.6 46.9 18.6 27.9 30.7 38.4 44.0 49.6 49.8 11.6 44.7 14.6 50.4 44.7 40.8 38.5 26.0 45.0 20.5 36.9 34.8 37.8
MIL-seg [18] � 79.6 50.2 21.6 40.6 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0

DCSM w/ CRF [21] - 76.7 45.1 24.6 40.8 23.0 34.8 61.0 51.9 52.4 15.5 45.9 32.7 54.9 48.6 57.4 51.8 38.2 55.4 32.2 42.6 39.6 44.1
F/B prior[19] - 79.2 60.1 20.4 50.7 41.2 46.3 62.6 49.2 62.3 13.3 49.7 38.1 58.4 49.0 57.0 48.2 27.8 55.1 29.6 54.6 26.6 46.6

STC[25] � 84.5 68.0 19.5 60.5 42.5 44.8 68.4 64.0 64.8 14.5 52.0 22.8 58.0 55.3 57.8 60.5 40.6 56.7 23.0 57.1 31.2 49.8
SEC [10] - 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7

Ours - 81.6 64.9 25.8 71.4 29.2 57.8 75.2 68.0 72.7 15.2 46.6 33.8 56.7 57.1 60.9 60.7 24.1 65.4 31.5 43.9 35.3 51.3

Table 3. Results on PASCAL VOC 2012 test set.
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Fully Supervised:
O2P [2] 85.4 69.7 22.3 45.2 44.4 49.6 66.7 57.8 56.2 13.5 46.1 32.3 41.2 59.1 55.3 51.0 36.2 50.4 27.8 46.9 44.6 47.6
SDS [7] 86.3 63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5 51.6

FCN-8s [13] - 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
Deeplab Large FOV [3] 92.6 83.5 36.6 82.5 62.3 66.5 85.4 78.5 83.7 30.4 72.9 60.4 78.5 75.5 82.1 79.7 58.2 82.0 48.8 73.7 63.3 70.3

Using Additional Supervision:
CCNN w/size [16] - 42.3 24.5 56.0 30.6 39.0 58.8 52.7 54.8 14.6 48.4 34.2 52.7 46.9 61.1 44.8 37.4 48.8 30.6 47.7 41.7 45.1

One point[1] 80.6 50.2 23.9 38.4 33.1 38.5 52.0 50.9 55.4 18.3 38.2 37.7 51.0 46.1 54.7 43.2 35.4 45.1 33.0 49.6 40.0 43.6
F/B prior + CheckMask[19] 87.4 65.7 26.0 64.2 43.7 53.2 72.6 63.6 59.5 17.1 48.0 43.7 61.2 52.0 69.3 54.8 43.0 50.3 34.6 59.2 42.0 52.9

Weakly Supervised:
MIL-FCN [17] - - - - - - - - - - - - - - - - - - - - - 24.9
EM-Adapt [15] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6

CCNN [16] - 21.3 17.7 22.8 17.9 38.3 51.3 43.9 51.4 15.6 38.4 17.4 46.5 38.6 53.3 40.6 34.3 36.8 20.1 32.9 38.0 35.5
MIL-ILP-seg [18] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6

DCSM w/ CRF [21] 78.1 43.8 26.3 49.8 19.5 40.3 61.6 53.9 52.7 13.7 47.3 34.8 50.3 48.9 69.0 49.7 38.4 57.1 34.0 38.0 40.0 45.1
F/B prior[19] 80.3 57.5 24.1 66.9 31.7 43.0 67.5 48.6 56.7 12.6 50.9 42.6 59.4 52.9 65.0 44.8 41.3 51.1 33.7 44.4 33.2 48.0

STC [25] 85.2 62.7 21.1 58.0 31.4 55.0 68.8 63.9 63.7 14.2 57.6 28.3 63.0 59.8 67.6 61.7 42.9 61.0 23.2 52.4 33.1 51.2
SEC [10] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

Weakly Supervised:
Ours 83.0 67.5 29.7 69.7 28.8 59.7 71.2 66.4 69.8 18.6 49.8 44.7 49.4 60.5 73.5 61.8 32.7 62.7 39.0 34.3 36.5 52.8

5. Conclusion
In this work, we estimate “Easiness” of prediction for

segmentation from visualization results and we trained fully

supervised segmentation model with retrieved prediction

results by “Easiness”. In training deep CNN, the image

number and training data quality is trade off, however we

showed that we can boost the segmentation accuracy by

combining data selection with data augmentation. In addi-

tion, we achieved state-of-the-art in weakly-supervised seg-

mentation setting on the Pascal VOC 2012 bench mark.
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