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ABSTRACT
Image-based food calorie estimation is crucial to diverse mo-
bile applications for recording everyday meal. However, some
of them need human help for calorie estimation, and even
if it is automatic, food categories are often limited or im-
ages from multiple viewpoints are required. Then, it is not
yet achieved to estimate food calorie with practical accu-
racy and estimating food calories from a food photo is an
unsolved problem. Therefore, in this paper, we propose es-
timating food calorie from a food photo by simultaneous
learning of food calories, categories, ingredients and cooking
directions using deep learning. Since there exists a strong
correlation between food calories and food categories, ingre-
dients and cooking directions information in general, we ex-
pect that simultaneous training of them brings performance
boosting compared to independent single training. To this
end, we use a multi-task CNN [1]. In addition, in this re-
search, we construct two kinds of datasets that is a dataset
of calorie-annotated recipe collected from Japanese recipe
sites on the Web and a dataset collected from an American
recipe site. In this experiment, we trained multi-task and
single-task CNNs. As a result, the multi-task CNN achieved
the better performance on both food category estimation
and food calorie estimation than single-task CNNs. For the
Japanese recipe dataset, by introducing a multi-task CNN,
0.039 were improved on the correlation coefficient, while for
the American recipe dataset, 0.090 were raised compared to
the result by the single-task CNN.

CCS CONCEPTS
� Computing methodologies � Object recognition;
Supervised learning by classification; Supervised learn-
ing by regression; Multi-task learning;

KEYWORDS
calorie estimation, Multi-task CNN, food recognition

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request per-
missions from permissions@acm.org.
ThematicWorkshops’17, October 23–27, 2017, Mountain View, CA,
USA
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-5416-5/17/10. . . $15.00
https://doi.org/10.1145/3126686.3126742

Figure 1: The differences of food calorie values
within the same food categories. “Spaghetti” in the
top row and “Miso soup” in the bottom row are
shown, respectively.
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1 INTRODUCTION
In recent years, because of a rise in health thinking on eat-
ing, many mobile applications for recording everyday meals
have been released so far. Some of them employ food image
recognition which can estimate not only food names but also
food calories. However, since these applications often require
users to enter information such as food categories and size
or volume, there are problems that it is troublesome and
subjective evaluation. To solve these problems, automatic
recognition of the food photo on the mobile devices is ef-
fective [2, 6, 9, 13, 14, 19]. However, in most of the cases,
the estimated calories are just associated with the estimated
food categories, or the relative size compared to the stan-
dard size of each food category which is usually indicated by
a user manually. Currently, no applications which can esti-
mate food calories automatically exist. Although most of the
image recognition tasks including food category recognition
have been almost solved due to great progress of CNN-based



image recognition methods, fully-automatic food calorie es-
timation from a food photo has still remained an unsolved
problem. We think that food calorie estimation not only
helps people’s health a lot, but also is promising as a new
problem of image recognition studies.

Regarding food calorie estimation, a lot of approaches
have been proposed so far. The main approach is to estimate
calories based on the estimated food category and its size or
volume, which is a quite standard approach [5, 6, 9, 13–15].
Since food calories strongly depend on food categories and
volumes, this approach is effective and important.

The other approach is to estimate calories from food pho-
tos directly without based on food categories and volumes.
The works adopting this approach are a few [12]. Food calo-
ries strongly depend on the food categories, volumes, ingre-
dients and cooking directions, and these appear in the ap-
pearance of finished dishes as shown in Figure 1. Even if
food categories are the same, the food calories are different
depending on used ingredients and cooking directions. We
think estimating calories from the appearance is important
in the task of food calorie estimation, which cannot be re-
solved by only food category estimation. Estimating food
calories directly from a food photo potentially make it pos-
sible to account for the intra-category differences as shown
in Figure 1.

In this work, basically we adopt the latter approach which
is estimating food calories directly, and propose simultaneous
learning of food calories, categories, ingredients and cooking
directions. for the food calorie estimation from a food photo.
Since there exists a strong correlation between food calo-
ries and food categories, ingredients and cooking directions
information, we expect that simultaneous training of them
brings performance boosting compared to independent sin-
gle training. To this end, we use a multi-task CNN [1]. Chen
and Ngo [4] proposed using a multi-task CNN to estimate
food categories and food ingredients at the same time, and
proved that simultaneous estimation boosted estimation per-
formance on both tasks. Inspired by this work, we introduce
a multi-task CNN for food calorie estimation. The food calo-
rie estimation is treated as a regression problem that inputs a
food photo and outputs food calorie. In that case, we assume
that a given food image contains only one dish and outputs
the value of the food calories for one person as shown in Fig-
ure 1. The food category estimation is treated as a normal
classification problem. Regarding the food ingredient esti-
mation, we convert food ingredients information into a real
number vector by Word2Vec [11], and estimate the vectors
as food ingredients information. Also, in the cooking direc-
tions estimation, the sentence of the cooking directions is
converted into a real number vector, and estimate the vec-
tors as the cooking directions information. In addition, in
this paper we collected calorie-annotated recipe data from
the online cooking recipe sites, and constructed two kinds
of datasets. Food photo datasets such as Food-101 [3], UEC
Food-100 [10] and VIREO Food-172 [4] have been published
so far, but have no calorie annotation.

To summarize our contributions in this paper, we (1) pro-
pose to use multi-task CNN for the task of food calorie es-
timation with simultaneous learning of food calories, cate-
gories, ingredients and cooking directions, and (2) construct
calorie-annotated food photo datasets by collecting recipe
data from online cooking recipe sites and (3) showed the
effectiveness of the multi-task CNN based approach by the
comprehensive experiments. In addition note that this work
is an extension of our previous work [7].

2 RELATED WORK

2.1 Image-based food calorie estimation
Various approaches has been proposed so far and the main
approach is to estimate calories based on estimated food
categories and its size or volume using the value of food
calorie per unit area or volume.

Chen et al. [5] proposed an image-based food calorie esti-
mation method that estimates food categories and volumes
by depth cameras such as Kinect. Depth cameras such as
Kinect are special devices, so it is thought that ordinary
people are difficult to use usually.

Kong et al. [9] proposed a mobile application to estimate
food calories from images multiple images,“DietCam”. They
carried out segmentation and food item recognition, and in
addition reconstructed 3D volumes of food items and calcu-
late food calories based estimated volumes. 3D reconstruc-
tion was performed with SIFT-based keypoint matching and
homography estimation which were a standard method of
3D stereovision. Also, Dehais et al. [6] carried out detection
of dishes, segmentation, food categorization. Furthermore,
3D reconstruction with images from multiple viewpoints is
performed, finally estimate the amount of carbohydrates. In
case of estimating food volumes with images from multiple
viewpoints, it is often necessary to calibrate the camera or
points where the photographing point, so it is burden on the
user.

Im2Calories by Google [13], which estimates food cate-
gories, ingredients, volumes of each of the dishes included
in a given food photo, and finally outputs food calories by
calculation based on the estimated volumes and the calories
density corresponding to the estimated food category. In the
experiment, there is a problem that the calorie-annotated
dataset is insufficient and evaluation is not sufficiently per-
formed.

Pouladzadhe et al. [15] proposed a food calorie estima-
tion system which needed two dish images taken from the
top and the side and used a thumb of a user as a reference
object. Their method to estimate volumes were calculated
by multiplying the size of food items estimated from the
top-view image by the height estimated from the side-view
image, which was relatively a straight-forward way. Okamoto
et al. [14] proposed an image-based calorie estimation system
which estimate food calories automatically by simply taking
a meal photo from the top with a pre-registered reference
object.

As described above, estimating food categories and vol-
umes is a standard approach for estimating food calories



from the food photo. In contrast to this, Miyazaki et al. [12]
estimate calories from food photos directly without estimat-
ing food categories and volumes. The biggest difficulty on
direct calorie estimation is creating datasets which contains
calorie-annotated food images. They hired dietitians to an-
notate calories on 6512 food photos which up-loaded to the
commercial food logging service, Food-Log1. Unfortunately,
their dataset was not released, because they used the food
photos picked up from the master image database of the com-
mercial service. In their work, they adopted image-search
based calorie estimation, in which they searched the calorie-
annotated food photo database for the top k similar images
based on conventional hand-crafted features such as SURF-
based BoF and color histograms and estimated food calories
by averaging the food calories of the top k food photos. Since
their method ignored information on food categories, their
method was applicable for any kinds of foods. However, the
number of food images was not enough for the search-based
method, and the employed image features was too simple.
As results, they failed to estimate food calories with high
accuracy. On the other hand, because in our work we use
CNN which is successful in image recognition, we expect
great improvement in terms of accuracy.

2.2 Multi-task CNNs
To learn multiple tasks simultaneously, multi-task CNN has
been proposed so far [1]. In the original work, it was applied
to the face attribute detection task.

Recently, it was applied to food category and ingredient
estimation by Chen and Ngo [4]. They showed that simul-
taneous estimation boosted estimation performance on both
tasks. Inspired by this work, we introduce a multi-task CNN
for simultaneous learning of food calories, categories, ingre-
dients and cooking directions.

3 METHOD
In this work, for training our CNNs we use Chainer2 [20]
that the framework of Deep Learning. The food calorie esti-
mation is treated as a regression problem that inputs a food
photo and outputs the value of the food calorie. We assume
that a given food image contains only one dish and outputs
the value of the food calorie for one person. Regarding food
ingredient estimation, for solving the problems of selecting
ingredients to be recognized and notation deformation, we
convert the food ingredients information to a real number
vector by Word2Vec [11], and use the vectors for training of
our CNNs. Also, in the cooking directions estimation, the
sentence of the cooking directions is converted into a real
number vector which is employed to training of our CNNs.

3.1 Overview of multi-task CNN
The architecture of our multi-task CNN is based on VGG-
16 [17]. As shown in Figure 2, the fully-connected layer (fc6)
is shared by all tasks, and the fc7 layer is branched to each
task, so that each task has the fc7 layer and the output layer

1http://www.foodlog.jp/
2http://chainer.org/

(fc8) independently. Chen and Ngo [4] showed that the best
multi-task CNN architecture for food recognition which is
based on VGG-16 is one having one shared fc layer and two
individual fc layers. We follow this architecture in our work
on multi-task food calorie estimation.

Figure 2: Overview of our multi-task CNN.

In this paper, we train the food calories, categories, ingre-
dients and cooking directions simultaneously. Let Lcal, Lcat,
Ling, Ldir be the loss function of each task, and let N be
the total number of learning data. The overall loss function
L is as follows:

L =
1

N

N∑
n=0

(Lcal + λcatLcat + λingLing + λdirLdir) (1)

We denote Lab as an absolute error and Lre as a relative
error, Lcal is defined as follows:

Lcal = λreLre + λabLab, (2)

where λre, λab, λcat, λing and λdir are the weight on the loss
function of each task, and the value of each λ is usually
determined so that all loss terms converge to the same value.
Details are described in experiments.

3.2 Food calorie estimation
The food calorie estimation task has the fc7a layer with 4096
dimension and an output layer (fc8a) composed of one unit
which outputs the food calorie. Because the food calories
are the real value data, this task is treated as a regression
problem. Generally, in the regression problem, a mean square
error is used as the loss function, although in this paper we
use the loss function of Equation (2). The absolute error is
the absolute value of the difference between the estimated
value and the ground-truth, and the relative error is the
ratio of the absolute error to ground-truth. Since both errors
are important indicators, we think that it is desirable to
consider both. Combining absolute error and relative error
as in Equation (2), both errors decrease in training. Let y be
the estimated value of an image x and g be the ground-truth,
Lab and Lre are defined as following:

Lab = |y − g| (3)

Lre =
|y − g|

g
(4)

3.3 Food category estimation
The food category estimation task has the fc7b layer with
4096 dimension and an output layer (fc8b) composed of units



corresponding to each category. Let yi be the estimated value
of unit i of an image x and gi be the ground-truth, Lcat are
defined as following:

Lcat = −
n∑

k=1

gk log yk, (5)

where gk is a binary value. We set gk = 1 if the unit i is
a correct answer, while we set gk = 0 if the unit i is not a
correct answer. n represents the number of food categories.
For example, in the case of 20 food categories, we set n as
20.

3.4 Food ingredient estimation
In this paper, we convert each word of food ingredient names
into a real-value vector by Word2Vec [11]. Since each recipe
contains multiple ingredients, we obtain a vector of ingredi-
ents information for each recipe by calculating a weighted
linear combination of Word2Vec vectors of all the ingredi-
ent words for each recipe. We use this calcurated vector as
a representation of ingredient information on food recipes.
In case of using ingredient vectors as training data, it is dif-
ficult to recognize ingredients individually for a given food
image. This is not a big problem, since our objective to intro-
duce ingredient information is not the ingredients recogni-
tion. We expect to obtain the effect of simultaneous learning
by multi-task CNNs and to improve estimation accuracy of
food calorie values and categories. Therefore we adopt this
method for training food ingredients information.

In this paper we use the model of Word2vec pre-trained
with a large-scale recipe corpus. For the Japanese recipe
dataset, we use sentences of cooking directions in the Cook-
Pad recipe dataset 3, while for the American recipe dataset,
we use sentences of cooking directions in American recipe
dataset described in 4.2. The sentences used for training
in Word2Vec are pre-processed such as removal of low fre-
quency words and subsampling of high frequency words.
We use Skip-gram [11] as model and perform negative sam-
pling [11] for training of Word2Vec.

For each recipe data, we use only the words of food in-
gredient name that is top Nmax of the value of the tf-idf.
In the experiments, We set Nmax to the average number of
food ingredient words of each recipe. Finally, a food ingredi-
ent vector for each recipe data is calculated from the vectors
obtained from Word2Vec and the values of tf-idf. Let wi as
the words of food ingredient name at recipe data rj , food in-
gredient vector vj of recipe data rj are defined as following:

vj =

N∑
k=1

tfidfk,j ∗ word2vec(wk) (6)

N is the number of words used in each recipe data. word2vec(wk)
is a real number vector of wk obtained from Word2Vec and
tfidfk,j is the value of tf-idf of wk at recipe data rj . Then vj
is L2 normalized.

Training of food ingredients information is realized as a
task of estimating food ingredient vector. This food ingre-
dient estimation task has the fc7c layer of 4096 dimensions

3http://www.nii.ac.jp/dsc/idr/cookpad/cookpad.html

and an output layer (fc8c) composed of units of dimensions
of food ingredient vector. Let yi as the output of unit i and
gi as the ground-truth, Ling are defined as following:

Ling =
1

2

n∑
k=1

(gk − yk)
2 (7)

3.5 Cooking directions estimation
In addition to ingredient information, we use cooking direc-
tions as addition information for multi-task learning as well.

In the same way as ingredient information, we convert
each word in the sentences of cooking directions into a real-
value vector by Word2Vec [11], and calculate a weighted lin-
ear combination of them for each recipe.

To obtain cooking direction vectors, we only use nouns,
verbs and adjectives in the sentences of cooking directions,
and use words with high tf-idf values. For each recipe data,
we use only the words of sentences of cooking directions that
are top Nmax of the value of the tf-idf. In the experiments,
We set Nmax to the average number of words included in
cooking directions of each recipe. Finally, cooking direction
vector for each recipe data is calculated from the vectors
obtained from Word2Vec with the tf-idf weights. Let wi be
the words of sentences of cooking directions at recipe data
rj . Cooking direction vector vj of recipe data rj is calculated
by Equation (6). Training of cooking direction information is
realized as a task of estimating this cooking directions vector.
This cooking direction estimation task has the fc7d layer
of 4096 dimensions and an output layer (fc8d) composed
of units of dimensions of cooking directions vector. Ling is
defined as Equation (7).

4 CONSTRUCTION OF
CALORIE-ANNOTATED FOOD
PHOTO DATASET

As far as I know, there is currently no publicly available
dataset with both food image and food calorie. It costs too
much to create calorie-annotated food image dataset by hand.
Instead, we focus on collecting such data from the Web. In
fact, some commercial cooking recipe sites provide recipes
annotated with calorie values. In addition, they provide in-
formation on a food ingredient list and a description of cook-
ing direction for each recipe as well. In this paper, we collect
such information from some commercial Web sites, and cre-
ate recipe datasets annotated with calorie values. In order to
confirm an effect of multi-task learning sufficiently, we con-
struct two kinds of datasets, Japanese and American, and
use them respectively in experiments.

4.1 Japanese calorie-annotated food photo
dataset

In the Japanese datasets, about 83,000 calorie-annotated
recipe data were collected from six recipe sites ( “Ajinomoto”4,

4http://park.ajinomoto.co.jp/



Figure 3: Example of a recipe page10.

“e-Recipe”5, “Kikkoman”6, “Kyou no Ryour”7, “Orange Page”8,
“Lettuce Club”9 ). Each recipe presented in these sites con-
tains an ingredient list, descriptions on cooking directions,
food images, and the value of a food calorie as shown in Fig-
ure 3. These websites does not provided the method for gen-
eral users to post recipe information. All of the recipe sites
except for “Ajinomoto” clearly indicate that professionals
such as chefs provided recipe information which is expected
to be reliable. Observing the collected data, it was found
that most of the food photos contain one kind of dishes, and
the value of food calorie are per serving. Therefore, in this
study, we assume that giving a single-label food photo and
estimating the calorie value for one person.

Since we use food categories on multi-task training, it is
necessary to collect food category information as well. In
this paper, we limited collecting recipes on the representative
15 categories included in the UEC Food-100 [10]. The UEC
Food-100 contains food photos of 100 kinds of Japanese foods
without food calories information.

5http://erecipe.woman.excite.co.jp/
6https://www.kikkoman.co.jp/homecook/
7http://www.kyounoryouri.jp/
8http://www.orangepage.net/
9http://www.lettuceclub.net/recipe/
10http://allrecipes.com/

Figure 4: 15 categories of Japanese recipe datasets.

(a) All the 15 foods. (b) “Spaghetti”, “Miso
soup” and “Curry”.

Figure 5: The distribution of the calorie values of
Japanese recipe datasets.

We collect recipe data which has food calories informa-
tion for one person. Then, we manually excluded the images
with low resolution or multiple kinds of dishes. Finally, we
excluded the food categories which is the number of sam-
ples less than 100. In the end, a total of 4877 images were
collected on 15 categories as shown in Figure 4. Figure 5(a)
shows the calorie distribution of all the collected recipes,
and Figure 5(b) shows that of “Miso soup”, “Spaghetti” and
“Curry”. Because of “Miso soup“, the calories of which is less
than 100 kcal are many, although we found that there are
many foods with around 500 kcal. As shown in Figure 5(b),
the values of food calories tend to gather depending on food
categories. Although in some food categories, the range of
food calories within the same food category are relatively
broad.

4.2 American calorie-annotated food
photo dataset

In the American datasets, about 24,000 calorie-annotated
recipe data were collected from Allrecipes10. Allrecipes is a
recipe site of a user contribution type, and the values of food



Figure 6: 21 categories of American recipe datasets.

calorie per serving is obtained from each recipe. We used the
categories used in Allrecipes and excluded the images with
low resolution or multiple kinds of dishes. In the end, a total
of 2484 images were collected on 21 categories as shown in
Figure 6. Compared with the Japanese recipe datasets, this
datasets contains foods more similar in appearance.

5 EXPERIMENTS
In this paper, we extended VGG-16 [17] and implemented
multi-task CNN as shown in the Figure 2. In the fc6 layer
and fc7 layer, Batch Normalization [8] were used instead of
Dropout [18]. In the layers other than Batch Normalization
layers and the fc8 layers, the pre-train model of ImageNet
1000 classification tasks were used as the initial value. For
optimization of the CNNs, we used SGD with the momentum
value, 0.9 and the size of mini-batch was 8. The weights of the
loss term of Equation (1) and Equation (2) were determined
as follows. Firstly, the weights of the loss terms are set to
1 and train once. In the training, the values of the losses
for each iteration are preserved. Finally, the inverse of the
average value of the loss in all iterations is used as the weight
for the loss term of each task. In this experiments, we fixed
λre to 1.

For the test, 10 models obtained at the 100 iteration in-
tervals from the last 1k iterations in training were used, and
the average value of the estimated values obtained from each
model was taken as the final estimated value.

5.1 The loss function of food calorie
estimation

In this experiment, we tested the effectiveness of loss func-
tion combining Lre and Lab. Equation (2) are compared to
the loss function composed of each loss function. We used
the Japanese recipe dataset 4.1. We used 70% of the dataset
for training, and the rest for evaluation. We used 0.001 of
the learning rate for 50k iterations, and then used 0.0001 for
20k iterations.

Table 1 shows the result of food calorie estimation. We
show the average of the relative error representing the ra-
tio between the estimated values and the ground-truth, and
the absolute error representing the differences between both.

Table 1: Comparison of loss functions of estimating
food calorie.
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only Lre 　 29.4 105.9 0.776 42.0 77.0
only Lab 　　 59.8 134.9 0.589 36.7 63.5
Lre + Lab 29.4 100.7 0.778 45.9 77.7

In addition we show the correlation coefficient between esti-
mated value and ground-truth and the ratio of the estimated
value within the relative error of 20% and 40%. In table 1,
the absolute error and the ratio of the estimated value within
the relative error of 20% indicate the accuracy is improved
by using both errors. Therefore, in this paper, we use Equa-
tion (2) as the loss function of food calorie estimation.

5.2 Cooking direction vector
In this experiment, we tested the effective cooking directions
vector for food calorie estimation. We used the Japanese
recipe dataset 4.1. We used 70% of the dataset for training,
and the rest for performance evaluation. We used 0.001 of the
learning rate for 50k iterations, and then used 0.0001 for 20k
iterations. we trained Word2Vec with about 8,710,000 sen-
tences of cooking directions in CookPad recipe dataset. The
dimension of the word vector is n = 500. In the sentences
of cooking directions for each recipe, because of Nmax = 44
which is the average value of the number of words of sen-
tences of cooking directions extracted from one recipe data,
we only used the words of the top 44 of the tf-idf value. Then,
in order to take time information into account simply, the
sentence is divided into m in time order, and for each divided
sentence, created a cooking directions vector by Equation
(6). Finally, the divided vectors are concatenated.

Table 2 shows the result of food calorie estimation. We
show the average of the relative error and the absolute er-
ror, the correlation coefficient and the ratio of the estimated
value within the relative error of 20% and 40%. Since the
sentences of cooking directions are basically short, it is con-
sidered that the effect of dividing was not obtained. There-
fore, in this paper, we use m = 1 as the cooking directions
vector.

5.3 Food calorie estimation with Japanese
recipe dataset

We used the Japanese recipe dataset 4.1. We used 70% of
the dataset for training, and the rest 30% for performance
evaluation. We used 0.001 of the learning rate for 50k it-
erations, and then used 0.0001 for 20k iterations. For food
ingredient vector and cooking directions vector, we trained
Word2Vec with about 8,710,000 sentences of cooking direc-
tions in CookPad recipe dataset. The dimension of the word
vector is n = 500. Regarding to food ingredient, because of
Nmax = 12, we only used the words of the top 12 ingredient



Table 2: Comparison of cooking directions vectors.
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calorie(single)　 29.4 100.7 0.778 45.9 77.7
+directions(BoW+PCA) 29.0 96.6 0.793 46.6 78.8
+directions(m=1, 500-d) 28.2 95.5 0.808 48.1 80.7
+directions(m=2, 1000-d) 28.4 97.7 0.800 48.1 79.3
+directions(m=3, 1500-d) 29.1 98.8 0.786 48.2 77.4
+directions(m=4, 2000-d) 28.9 99.5 0.785 46.6 78.1

Table 3: The estimation results in Japanese recipe
dataset.
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calorie(single)　 29.4 100.7 0.778 45.9 —
+categories 27.9 95.2 0.802 48.8 82.8
++ingredients　 27.6 94.4 0.811 49.5 85.2
+++directions 27.4 91.2 0.817 50.1 84.1
+ingredients　 29.2 96.8 0.795 46.8 —
++directions 28.0 97.9 0.806 47.2 —
+directions　 28.2 95.5 0.808 48.1 —
++categories　 27.3 96.0 0.808 48.8 84.8

categories(single)　 — — — — 81.2

names of the tf-idf value for each recipe data, and created
a food ingredient vector by Equation (6). In the sentences
of cooking directions for each recipe, because of Nmax = 44,
we only used the words of the top 44 of the tf-idf value, and
created a cooking directions vector.

Table 3 shows the results of food calorie estimation. Re-
garding the food calorie estimation, we show the average
of the relative error and the absolute error, the correlation
coefficient and the ratio of the estimated value within the
relative error of 20%. In addition regarding food category
estimation, we show the top-1 classification accuracy. Table
3 indicates the performance improve by multi-task CNNs in
any evaluation. In the case of multi-task of all task, 2.0% and
9.5 kcal were reduced on the relative error and the absolute
error, and 0.039 and 4.2% were increased on the correlation
coefficient and the ratio of the estimated calories within 20%
error. In addition, 2.9% were increased on the top-1 accuracy.
Figure 7(a) shows the relation between the ground truth
values and the estimated calorie values by the single-task
CNNs, while Figure 7(b) shows the relation by the multi-
task CNN. Comparing Figure 7(a) with Figure 7(b), we can
confirm that the accuracy is improved by multi-task CNN
from 95% confidence ellipses. Figure 8 and Figure 9 shows
four examples of successfully estimated results and wrongly
estimated results, respectively.

(a) Single-task CNNs. The
correlation coefficient is
0.778.

(b) Multi-task CNNs. The
correlation coefficient is
0.817.

Figure 7: The relation between the ground-truth val-
ues and the estimated calorie values.

Figure 8: Examples on successful estimation of food
calories.

Figure 9: Examples on failure estimation of food
calories.

5.4 Food calorie estimation with
American recipe dataset

We used the American recipe dataset 4.2. For performing 5-
fold cross-validation, we used 80% of the dataset for training,
and the rest 20% , since the size of test data is small. We
used 0.001 of the learning rate for 30k iterations, and then
used 0.0001 for 40k iterations. For food ingredient vector
and cooking directions vector, we trained Word2Vec with



Table 4: The estimation results in American recipe
dataset.
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calorie(single)　 43.3 128.5 0.293 32.2 —
+categories 42.9 120.5 0.361 34.3 58.7
++ingredients　 41.7 119.6 0.383 35.1 61.1
+++directions 42.9 120.6 0.369 33.7 61.3
+ingredients　 43.0 124.2 0.335 32.5 —
++directions 42.1 122.5 0.351 32.5 —
+directions　 42.0 123.0 0.349 33.6 —
++categories　 42.4 120.8 0.365 33.5 59.3

categories(single)　 — — — — 54.4

about 82,000 sentences of cooking directions in American
recipe dataset. The dimension of the word vector is n = 500.
Regarding to food ingredient, because of Nmax = 26, we
only used the words of the top 26 ingredient names of the
tf-idf value in each recipe data. In the sentences of cooking
directions for each recipe, because of Nmax = 66, we only
used the words of the top 66 of the tf-idf value.

We performed 5-fold cross-validation and indicate the re-
sults of food calorie estimation in the Table 4. In the case
of multi-task of food categories and ingredients, 1.6% and
8.9 kcal were reduced on the relative error and the absolute
error, and 0.090 and 2.9% were increased on the correla-
tion coefficient and the ratio of the estimated calories within
20% error. In addition, 6.7% were increased on the top-1 ac-
curacy. Similar to Japanese recipe dataset, multi-task CNNs
advantage was confirmed.

5.5 Comparison with a baseline
In this experiment, we compared with Miyazaki et al. [12].
However, since the used dataset is different, it is a reference
comparison. Miyazaki et al. [12] estimated calories from food
photos directly without estimating food categories and vol-
umes. In their work, they adopted image-search based calo-
rie estimation, in which they searched the calorie-annotated
food photo database for the top 5 similar images based on
conventional hand-crafted features such as SURF-based BoF
and color histograms and estimated food calories by averag-
ing the food calories of the top 5 food photos. Note that
this comparison is only for reference and not formal, since
the detailed conditions and the datasets are different. The
dataset used in [12] contains multiple-dish food photos and
has no limitation on food categories, both of which are dif-
ferent from our dataset.

Table 5 shows the results. In Japanese recipe data, our re-
sult by multi-task CNNs outperformed the result of [12]. 0.5
and 13% were improved on the correlation coefficient and the
ratio of the estimated calories within 20% error. In Amer-
ican recipe data, 0.06% were improved on the correlation
coefficient.

Table 5: Comparison with the result of [12]

correlation　 ≤ 20% err.(%) ≤ 40% err.(%)

Baseline 0.32 35 79

Multi-task (Japanese) 0.82 50 80
Multi-task (American) 0.38 35 65

6 DISCUSSION
In this paper, we collected calorie-annotated food photos
from the online cooking recipe sites, and used the value of
food calories as ground-truth for training and testing. How-
ever, we cannot guarantee the accuracy of this value of food
calorie, and it is considered to contain many erroneous val-
ues. Therefore, it is considered that it is difficult to estimate
the food calorie with high precision based on our datasets. In
despite of this, it is thought that it was beneficial regardless
of the datasets that the results of the performance improve-
ment of both food calorie estimation and food category clas-
sification task by multi-task CNNs. In order to realize highly
accurate food calorie estimation, it is considered to be urgent
to create high-quality datasets. It is the biggest issue how to
build a large-scale calorie-annotated food photo dataset.

7 CONCLUSIONS
In this paper, we proposed estimating food calorie from a
food photo by simultaneous learning of food calories, cate-
gories, ingredients and cooking directions using multi-task
CNNs. Also, we constructed two kinds of datasets that is
a dataset of calorie-annotated recipe collected from Japan-
ese recipe sites on the Web and a dataset collected from an
American recipe site. In this experiments, in both datasets,
the performances of multi-task CNNs outperformed the re-
sult of independent single-task CNNs.

As future work, we plan to estimation of volume for food
calorie estimation, and construction of large and high-quality
datasets. For highly accurate food calorie estimation, food
detection and segmentation are important, and using a pre-
registered reference object as [14, 16] may be necessary. It is
also conceivable to estimate the volume of food from images
from multiple viewpoints [6, 9]. We expect that much more
accurate calorie estimation is possible by introducing multi-
task CNN-based calorie estimation into volume/size-based
calorie estimation approaches.
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