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Abstract. In this paper, we deal with a weakly supervised semantic
segmentation problem where only training images with image-level la-
bels are available. We propose a weakly supervised semantic segmenta-
tion method which is based on CNN-based class-specific saliency maps
and fully-connected CRF. To obtain distinct class-specific saliency maps
which can be used as unary potentials of CRF, we propose a novel method
to estimate class saliency maps which improves the method proposed by
Simonyan et al. [1] significantly by the following improvements: (1) using
CNN derivatives with respect to feature maps of the intermediate con-
volutional layers with up-sampling instead of an input image; (2) sub-
tracting the saliency maps of the other classes from the saliency maps
of the target class to differentiate target objects from other objects; (3)
aggregating multiple-scale class saliency maps to compensate lower reso-
lution of the feature maps. After obtaining distinct class saliency maps,
we apply fully-connected CRF [2] by using the class maps as unary po-
tentials. By the experiments, we show that the proposed method has out-
performed state-of-the-art results with the PASCAL VOC 2012 dataset
under the weakly-supervised setting.

Keywords: semantic segmentation, weakly supervised segmentation,
fully convolutional neural network, fully connected CRF

1 Introduction

Due to the recent advent of deep learning methods, convolutional neural network
(CNN) based methods have outperformed most of the previous state-of-the-art
in various kinds of image recognition tasks. In the task of semantic segmentation,
CNN achieved about 50% improvement [3,4]. Semantic image segmentation is
a task to add object class labels to each of all the pixels in a given image,
which is more challenging task than object classification and object detection.
Semantic segmentation is expected to contribute detailed analysis of images in
various practical tasks such as food calorie estimation [5,6]. However, most of the
CNN based semantic segmentation methods assume that pixel-wise annotation
is available, which is costly to obtain in general.

On the other hand, collecting images with image-level annotation is easier
than those with pixel-level annotation, since many images attached with tags
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(A) sample Simonyan et al. [1] GrabCut our saliency maps (H) CRF
image (B) motorbike (C) person (D) motorbike (E) person (F) motorbike (G) person result

Fig. 1. (From the left) (A)sample image, (B)(C)its class saliency maps with respect
to “motorbike” and “person” by [1], (D)(E)estimated regions of them by GrabCut,
(F)(G)class saliency maps by the proposed method, and (H) estimated regions by
Dense CRF.

are available on hand-crafted open image datasets such as ImageNet as well as
on the Web. In this work, we focus on weakly-supervised semantic segmentation
which requires not pixel-wise annotation as well as bounding box annotation but
only image-level annotation.

In this paper, we propose a weakly supervised semantic segmentation method
which is based on CNN-based class saliency maps and fully-connected CRF [2].
To obtain class saliency maps which are so distinct that we can use them as unary
potentials terms of CRF, we propose a novel method to estimate class saliency
maps which improves the method proposed by Simonyan et al. [1] significantly.
Simonyan et al. [1] proposed class saliency maps based on the gradient of the class
score with respect to the input image, which showed weakly-supervised object
localization could be done by back-propagation-based visualization. However,
their class saliency maps are vague and not distinct (Fig.1(B)(C)). In addi-
tion, when different kinds of target objects are included in the image, the maps
tend to respond to all the object regions. Although they adopted GrabCut for
weakly-supervised segmentation based class saliency maps in their paper, their
method is unable to distinguish multiple object regions (Fig.1(D)(E)). To re-
solve the weaknesses of their method, we propose a new method to generate
CNN-derivatives-based saliency maps. The proposed method can generate more
distinct class saliency maps which discriminate the regions of a target class from
the regions of the other classes (Fig.1(F)(G)). The generated maps are so dis-
tinct that they can be used as unary potentials of CRF as they are (Fig.1(H)).
We call our new method for generating class saliency maps as “Distinct Class
Saliency Maps (DCSM)”.

To obtain DCSM, we propose three improvements over Simonyan et al. [1]:
(1) using CNN derivatives with respect to feature maps of the intermediate
convolutional layers with up-sampling instead of an input image; (2) subtracting
the saliency maps of the other classes from the saliency maps of the target
class to differentiate target objects from other objects; (3) aggregating multiple-
scale class saliency maps to compensate lower resolution of the feature maps.
After obtaining distinct class saliency maps, we apply fully-connected CRF [2]
by using the class maps as unary potentials. As a CNN, we use the VGG-16
pre-trained with 1000-class ILSVRC datasets and fine-tune it with multi-class
training using only image-level labeled dataset. By the experiments, we show
that the proposed method has outperformed state-of-the-arts on the PASCAL
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VOC 2012 dataset in the task of weakly supervised semantic segmentation under
the standard condition.

To summarize our contributions in this paper, they are as follows:

– We propose a new weakly supervised segmentation method which combines
distinct class saliency maps (DCSM) and fully connected CRF.

– We propose a novel method to estimate distinct class saliency maps:
• based on CNN derivatives with respect to feature maps of the interme-

diate convolutional layers.
• subtracting class saliency maps from each other.
• aggregating multiple-scale class saliency maps.

– The obtained result outperforms those by the current state-of-the-arts on the
Pascal VOC 2012 segmentation dataset under the weakly supervised setting.

2 Related Work

Recently, CNN-based semantic segmentation are being explored very actively,
and the accuracy has been significantly improved compared to the non-CNN-
based conventional methods. In this section, first we describe fully-supervised
semantic segmentation , and next we explain weakly-supervised segmentation
problem which is addressed in this work. Finally we describe some works based
on gradient-based class saliency detection.

2.1 CNN-based Fully-Supervised Semantic Segmentation

As early works on CNN-based semantic segmentation, Girshick et al. [7] and
Hariharan et al. [8] proposed an object segmentation method using region pro-
posal and CNN-based image classification. Firstly, they generated 2000 region
candidates at most by Selective Search [9], and secondly apply CNN image clas-
sification by feed-forwarding of the CNN to each of the proposals. Finally they
integrated all the classification results by non-maximum suppression and gener-
ated the final object regions. Although these methods outperformed the conven-
tional methods greatly, they had a drawback that they required long processing
time for CNN-based image classification of many region proposals.

While Girshick et al. [7] and Hariharan et al. [8] took advantage of excellent
ability of a CNN on image classification task for semantic image segmentation
in a relatively straightforward way, Long et al. [10] and Mostajabi et al. [11] pro-
posed CNN-based semantic segmentation in a hierarchical way which achieved
more robust and accurate segmentation. A CNN is much different from conven-
tional bag-of-features framework regarding multi-layered structure consisting of
multiple convolutional and pooling layers. Because CNN has several pooling lay-
ers, location information is gradually losing as the signal is transmitting from the
lower layers to the upper layers. In general, the lower layers hold location infor-
mation in their activations, while the upper layers holds weak local information.
Therefore, it is difficult to estimate object regions by using only information in
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the last output layer. Long et al. [10] and Mostajabi et al. [11] pointed out that it
can complement spatial information in the upper activations by up-sampling of
the information in the middle layers and integrating them with the information
in the upper layers. Upsampling in a CNN is generally called as “Deconvolution”.

Long et al. [10] proposed a CNN-based segmentation method which inte-
grates deconvolution from the intermediate layers and object heat map obtained
by replacing all the full connection layers with 1×1 convolutional layers and pro-
viding a larger-size image than a usual 256×256 image. This replaces class score
vectors with class score maps as outputs of the CNN, which express rough loca-
tion of objects [12]. This idea was originally proposed by Sermanet et al. [13] and
called as “fully convolutional network” or “sliding CNN”, which plays important
roles to raise performance on CNN-based segmentation. By using larger-size im-
ages as input images, more detailed location information can be obtained in the
intermediate layers as well as in the class score maps from the last layer. This
can be used as unary potentials of CRF [3,4,14].

On the other hand, Mostajabi et al. [11] proposed a method which associates
up-sampled activation features of several intermediate layers with super-pixels
and treat them as local features, which are called “zoom-out features”.

In our work, we also aggregate location information in multiple intermediate
layers for image segmentation. However, we adopt a back-propagation-based
method, while they adopted feed-forward image segmentation.

2.2 CNN-based Weakly-Supervised Segmentation

Most of the conventional non-CNN-based weakly supervised segmentation method
employed Conditional Random Field (CRF) with unary potentials estimated by
multiple instance learning [15], extremely randomized hashing forest [16], and
GMM [17].

As a CNN-based method, Pedro et al. [18] addressed weakly-supervised seg-
mentation by using multi-scale CNN proposed in [13]. They integrated the out-
puts which contain location information with log sum exponential, and limited
object regions to the regions overlapped with object proposals [19].

Pathak et al. [20,21] and Papandreou et al. [22] proposed weakly-supervised
semantic segmentation by adapting CNN models for fully-supervised segmenta-
tion to weakly-supervised segmentation. In MIL-FCN [20], they trained the CNN
for fully-supervised segmentation proposed in Long et al. [10] with a global max-
pooling loss which enables training of the CNN model using only training data
with image-level labels which is the same idea as Multiple Instance Learning.
Constrained Convolutional Neural Network (CCNN) [21] improved MIL-FCN
by adding some constraints and using fully-connected CRF [2]. Papandreou et
al. [22] trained the DeepLab model [3] proposed as a fully-supervised model with
EM algorithm, which is called as “EM-adopt”. Both CCNN and EM-adopt gen-
erated pseudo-pixel-level labels from image-level labels using constraints and EM
algorithms to train FCN and DeepLab which were originally proposed for fully
supervised segmentation, respectively. Both showed Dense CRF [2] were helpful
to boost segmentation performance even in the weakly supervised setting.
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While all the above-mentioned methods on weakly supervised segmentation
employed only feed-forward computation, we adopted a method based on back-
propagation (BP) computation. In this paper, our BP-based method outperforms
all the methods based on feed-forward computation.

2.3 Gradient-based Region Estimation with Back-Propagation

Simonyan et al. [1] showed that object segmentation without pixel-wise training
data can be done by using back-propagation processing which is a method to
train a CNN. To train a CNN, in general, we optimize CNN parameters so as to
minimize the loss between groundtruth values and output values. In the back-
propagation process, derivatives of the loss function are propagated from the top
layers to the lower layers. Springenberg et al. [23] also proposed a method for ob-
ject localization by back-propagating the derivatives of a maximum loss value of
the object detected in the feed-forward computation. They achieved more accu-
rate localization by limiting back-propagating values to positive values. Recently,
Pan et al. [24] extended BP-based saliency maps by adding superpixel-based re-
gion refinements. BP-based methods was extended to temporal localization of
events in a video by Gan et al. [25].

Although these methods can localize single objects in given images, it is
difficult to localize multiple different kinds of objects in the same image as
shown in Fig.1(B)(C). This is because Pan et al. [24] proposed their method
for generic salient object detection. BP-based methods have never been intro-
duced into weakly-supervised semantic segmentation for multiple object images
such as those of the PASCAL VOC dataset so far. To apply BP-based localiza-
tion methods to the PASCAL VOC segmentation task, we need to modify them
so that they can estimate class-specific saliency. In this paper, we have achieved
that, and we show that our class-specific saliency maps (DCSM) are suitable for
unary potentials of Dense CRF as shown in Fig.1(F)(G)(H).

Moreover, all the existing BP-based methods used only the derivatives of
the loss function with respect to an input image for object localization, and
did not use derivatives or feed-forward activations in the intermediate layers. In
our work, we obtained more distinctive class-specific saliency maps by using the
derivatives of multiple intermediate layers.

3 Methods

In this section, we overview the proposed method, and explain the detail of the
method which consists of three elements: multi-label training of CNN, multi-class
object saliency map estimation which was inspired by [1], and fully connected
CRF [2].

3.1 Overview

To achieve semantic segmentation for a given image, we (1) perform multi-label
classification on a given image by feed-forward computation of the CNN, (2)
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Fig. 2. Processing flow of the proposed method: (1) multi-label classification (2) com-
putation of back-propagation with respect to each of the detected class labels (3)
generating raw class saliency maps (4) subtracting raw saliency maps of the other can-
didate classes from the saliency maps of the target class (5) applying Dense CRF with
subtracted class saliency maps as unary potential

calculate CNN derivatives with respect to feature maps of the intermediate con-
volutional layers with back-propagation by using each of the detected class labels
as supervised signals in the loss function, (3) aggregate CNN derivatives of sev-
eral intermediate layers with up-sampling to generate raw class saliency maps,
(4) subtract raw saliency maps of the other candidate classes from the saliency
maps of the target class, and (5) apply fully-connected CRF (Dense CRF) with
subtracted class saliency maps as unary potential. Finally we obtain a segmen-
tation result. The processing flow is shown in Fig. 2.

3.2 Training CNN

For preparation, we train a CNN with a multi-label loss function. As an off-the-
shelf basic CNN architecture, we use the VGG-16 [26] pre-trained with 1000-class
ILSVRC datasets. In our framework, we fine-tune a CNN with training images
with only image-level multi-label annotation.

Recently, fully convolutional networks (FCN) which accept arbitrary-sized
inputs are used commonly in works on CNN-based detection and segmentation
such as [12] and [10], in which fully connected layers with n units were replaced
with the equivalent convolutional layers having n 1 × 1 filters. Following them,
we introduce FCN to enable multi-scale generation of class saliency maps. When
training, we insert global max pooling before the final loss function layer to deal
with larger input images than the images used for pre-training of the VGG-16.
We use images which are normalized to 500×500 by rescaling to have the largest
size of the 500 pixels and zero-padding for training and testing in the same way
as [12]. For multi-scale training, we resize training images randomly between the
ratio 0.7 and 1.4 within a mini-batch.

To carry out multi-label training of the CNN, we use a Sigmoid cross entropy
loss which is a standard loss function for multi-label annotation instead of a
soft-max loss used in the original VGG-16 in the same way as [12] and [20]. The
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Sigmoid cross entropy loss function is represented in the following equation:

loss =
K∑

n=1

[−pnlog p̂n − (1 − pn)log(1 − p̂n)] (1)

where K is the number of classes, pn = {0, 1} which represents the existence of
the corresponding class label, and p̂n means the output of Sigmoid function of
the class score fn(x) represented in the following equation:

p̂n =
1

1 + e−fn(x)
(2)

3.3 Class Saliency Maps

We propose a new method to estimate class-specific saliency maps by enhancing
the method proposed by Simonyan et al. [1] greatly. It consists of (1) extracting
CNN derivatives with respect to feature maps of the intermediate convolutional
layers, (2) subtracting class saliency maps between the target class and the other
classes, and (3) aggregation of multi-scale saliency maps.

Extracting CNN derivatives In [1], they regarded the derivatives of the
class score with respect to the input image as class saliency maps. However, the
position of an input image is the furthermost from the class score output on the
deep CNN, which sometime causes weakening or vanishing of gradients. Instead
of the derivatives of the class score with respect to the input image, we use the
derivatives with respect to feature maps of the relatively upper intermediate
layers which are expected to retain more high-level semantic information. We
select the maximum absolute values of the derivatives with respect to the feature
maps at each location of feature maps across all the kernels, and up-sample them
with bilinear interpolation so that their size becomes the same as an input image
(Fig.3 (C)-(G)). Finally we average them to obtain one saliency map (Fig.3 (B)).
The idea on aggregating of information extracted from multiple feature layers
was inspired by the work of [10], although they extracted not CNN derivatives
but feature maps calculated by feed-forwarding.

The class score derivative vc
i of a feature map in the i-th layer is the derivative

of class score Sc with respect to the layer Li at the point (activation signal) L0
i :

vc
i =

∂Sc

∂Li

∣∣∣∣
L0

i

(3)

vc
i can be computed by back-propagation. After obtained vc

i , we up-sample
it to wc

i with bilinear interpolation so that the size of an 2-D map of vc
i be-

comes the same as an input image. Next, the class saliency map M c
i ∈ Rm×n

is computed as M c
i,x,y = maxki |wc

i,hi(x,y,k)|, where hi(x, y, k) is the index of
the element of wc

i . Note that each value of the saliency map is normalized by
tanh(αMi,x,y/maxx,y Mi,x,y) for visualization in Fig.3 and all the other figures
with α = 3.
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(A) (B) (C) (D) (E) (F) (G)

Fig. 3. Class saliency maps obtained from the VGG16-net fine-tuned with the PAS-
CAL VOC 2012 dataset. (A) an input image, (B) average of [(E)(F)(G)], (C) conv1 1,
(D) conv2 1, (E) conv3 2, (F) conv4 2, (G) conv5 2

(raw) cow (diff) (raw) person (diff) (raw) car (diff) (raw) bus (diff)

(raw) bicycle (diff) (raw) person (diff) (raw) car (diff) (raw) person (diff)

Fig. 4. (raw) raw maps without subtraction (diff) maps with subtraction of other class
maps.

Subtracting raw class saliency maps As shown in Fig.1(B)(C), the saliency
maps of two or more different classes tend to be similar to each other especially
in the image-level. The saliency maps by [1] are likely to correspond to fore-
ground regions rather than specific class regions. This problem is relaxed in the
proposed methods, because we use saliency maps obtained from intermediate
layers. However, the saliency regions of different classes are still overlapped with
each other (Fig.4 (raw)).

To resolve that, we subtract saliency maps of the other candidate classes from
the saliency maps of the target class to differentiate target objects from other
objects. Here, we assume that we use the CNN trained with multi-label loss,
and select several candidate classes the class score of which exceed a pre-defined
threshold with a pre-defined minimum number. (In the experiments, we set 0.5
to the threshold and 3 to the minimum number.)

The improved class saliency maps with respect to class c, M̃ c
i , are represented

as:
M̃ c

i,x,y =
∑

c′∈candidates

max
(
M c

i,x,y − M c′

i,x,y, 0
)

[c 6= c′], (4)

where candidates is a set of the selected candidate classes. Fig.4 shows results
without subtraction in the left (raw) and ones with subtraction in the right
(diff). As we can see, subtraction of saliency maps resolved overlapped regions
among the maps of the different classes.

Aggregating multi-scale class saliency maps We use fully convolutional
networks (FCN) which accept arbitrary-sized inputs for multi-scale generation
of class saliency maps. If the larger input image than one for the original CNN is
given to the fully-convolutionalized CNN, the output becomes class score maps
represented as h×w×C where C is the number of classes, and h and w are larger
than 1. To obtain CNN derivatives with respect to enlarged feature maps, we
simply back-propagate the target class score map which is define as Sc(:, :, c) = 1



Distinct Class-specific Saliency Maps 9

(in the Matlab notation) with 0 for all the other elements, where c is the target
class index.

The final class saliency map M̂ c averaged over the layers and the scales is
obtained as follows:

M̂ c
x,y =

1
|S||L|

∑
j∈S

∑
i∈L

tanh(αM̃ c
j,i,x,y), (5)

where L is a set of the layers for which saliency maps are extracted, S is a set of
the scale ratios, and α is a constant which we set to 3 in the experiments. Note
that we assume the size of M̃j,i for all the layers are normalized to the same size
as an input image before calculation of Eq.5.

In the experiments, we adopted guided back-propagation (GBP) [23] as back-
propagation method instead of normal back-propagation (BP) used in [1]. The
difference between two methods is in the backward computation through ReLU.
GBP can visualize saliency maps with less noise components than normal BP by
back-propagating only positive values of CNN derivatives through ReLU [23].

3.4 Fully Connected CRF

Conditional Random Field (CRF) is a probabilistic graphical model which con-
siders both node priors and consistency between nodes. Because class-specific
saliency maps obtained in the previous subsection represent only probability of
the target classes on each pixel and have no explicit information on object region
boundaries, we apply CRF to estimate object boundaries. In this paper, we use
fully connected CRF (noted as “FC-CRF” or “Dense CRF”) [2] where every
pixel is regarded as a node, and every node is connected to every other node.
The energy function is defined as follows:

E(c) =
∑

i

θi(ci) +
∑
i,j

θi,j(ci, cj) (6)

where ci represents a class assignment on pixel i. The first unary term of the
above equation is calculated from class saliency maps M̂ c

i . We defined it as
θi(ci) = − log(M̂ c

x,y) .
Since the CNN we trained has no background class, we have no class maps

on background class. To use CRF for image segmentation, a unary potential on
the background class is needed as well as foreground potential. We estimate a
unary potential on the background class from the maps of the candidate classes
selected in the previous step by the following equation.

M̂BG
x,y = 1 − max

c∈target
M̂ c

x,y (7)

where M̂BG
x,y is a saliency map of background class, and target represents a set

of the selected candidate classes.
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The pairwise term of Eq.6 is represented by θi,j(ci, cj) = u(ci, cj)k(fi, fj)

where u(xi, xj) =

{
1 (ci 6= cj)
0 others

and k(fi, fj) is a Gaussian kernel. Note that fi, fj

represents some kinds of image features extracted from pixel i and j. Following
[2], we adopt bilateral position and color terms, and the kernels are

k(fi, fj) = w1 exp
(
−|pi − pj |2

2γα2
− |Ii − Ij |2

2γβ2

)
+ w2 exp

(
−|pi − pj |2

2γγ2

)
(8)

where the first kernel depends on both pixel positions (denoted as p) and pixel
color intensities (denoted as I), and the second kernel only depends on pixel
positions. The hyper parameters γα, γβ , and γγ control the scale of the Gaussian
kernels. This model is amenable to efficient approximate probabilistic inference
proposed by [2].

4 Experiments

We evaluated the proposed methods using the PASCAL VOC 2012 data. We
compared the results with state-of-the-arts, and show significant improvements
by the proposed methods.

4.1 Dataset

In the experiments, we used the PASCAL VOC 2012 segmentation data [27] to
evaluate the proposed method. The PASCAL VOC 2012 segmentation dataset
consists of 1464 training images, 1449 validation images, and 1456 test images
including 20 class pixel-level labels as well as image-level labels. For training,
we used the augmented PASCAL VOC training data including 10582 train aug
images provided by Hariharan et al. [28] in the same way as the other works
on weakly-supervised segmentation such as MIL-FCN [20], EM-Adapt [22] and
CCNN [21].

For evaluation, we used a standard intersection over union (IoU) metric which
was the official evaluation metric in the PASCAL VOC segmentation task.

4.2 Experimental Setup

We used VGG-16 [26] as a basic CNN, modified it regarding Sigmoid entropy
loss for multi-label training, random resizing of training images and global max
pooling for multi-scale training following [12], and fine-tuned it with PASCAL
VOC train aug dataset. We used Caffe [29] to train the CNN with batchsize
2, learning rate 1e-5, momentum 0.9 and weight decay 0.0005. Note that we
followed [21] regarding very small batchsize for fine-tuning of VGG-16. For the
first 30000 iterations, we fine-tuned only the upper layers of the modified VGG-
16 than Pool 5, and for the next 20000 iterations, we fine-tuned all the layers.
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Table 1. Results of the mean IoU by Simonyan et al. and ours on Pascal VOC 2012
val set

method \ α 2 2.5 3 4 5 6 7 8 9 10 15

Simonyan et al. - - 10.0 20.6 28.3 32.7 33.4 33.8 33.8 33.3 28.7
DCSM (ours) 40.0 44.0 44.1 40.6 36.4 - - - - -

As hyperparameters of the fully-connected CRF, we used the following pa-
rameters which were chosen by grid search with validation data: w1 = w2 = 1,
γα = 30, γβ = 10, and γγ = 3.

Using GPU, it takes about 0.3 seconds to perform segmentation for one
image.

4.3 Evaluation on Class Saliency Maps

First, we compare the class saliency maps estimated by the proposed method
(noted as DCSM (Distinct Class-specific Saliency Maps)) with ones by Simonyan
et al. [1] qualitatively. Fig.5 shows both the results by Simonyan et al. and our
method for three multiple object images and one single object images. From these
results, it is shown that our method is much more effective for not only multiple
object images but also single object images than the previous method. This
figure shows our results are significantly better than [1], because we aggregate
gradients in the multiple intermediate layers and carry out subtraction of raw
class saliency maps. Our results clearly discriminated multiple regions of the
different classes.

Fig.6 shows the results for images containing three or more objects. In even
such cases, all the class saliency maps except for “chair” in the top-right sample
were estimated successfully.

To compare both quantitatively, we carried out weakly supervised segmen-
tation using estimated class saliency maps and Dense CRF. To obtain maps for
unary potentials of CRF, we used Eq.5 which contains a hyper-parameter, α. As
shown in Table 1, we searched for the best values of α for both of Simonyan et
al. and our method. As results, ours achieved 44.1% as the best meanIoU with
α = 3, while Simonyan et al. achieved 33.8% with α = 8(or 9). From both the
best results, our method is superior to Simonyan et al. significantly as a method
to estimate CRF unary potentials under the weakly supervised setting.

4.4 Effects of Parameter Choices

Intermediate layers In the proposed method, we extract CNN derivatives
from intermediate layers of the VGG-16, and averaged them to estimate class
saliency maps. We examined the effects on which layers we use to extract deriva-
tives from. Table 2 shows the results evaluated with VOC val set varying the
layer combinations. “Block1” in the table means the average of conv1 1 and
conv1 2 in VGG-16, and “average Block 3,4,5” means the average of Block 3,
Block 4, and Block 5. Among the single blocks, Block 4 achieved the best re-
sult, and among the block combinations, the combination of Block 3,4,5 achieved
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person train person train bottle person bottle person

chair sofa chair sofa bicycle bicycle
Simonyan et al. DCSM (ours) Simonyan et al. DCSM (ours)

Fig. 5. Obtained class saliency maps (Left) by Simonyan et al. [1] (Right) by the
proposed method (DCSM).

car cow person chair table person

car motor bike person table person potted plant tv

Fig. 6. Obtained class saliency maps for images containing three or more classes.

Table 2. Effects by layers from which
CNN derivatives are extracted.

layer mean IoU

block1 (conv1 1, conv1 2) 5.5
block2 (conv2 1, conv2 2) 21.5
block3 (conv3 1, conv3 2, conv3 3) 32.5
block4 (conv4 1, conv4 2, conv4 3) 40.3
block5 (conv5 1, conv5 2, conv5 3) 26.3

average block 1,2,3,4,5 41.3
average block 2,3,4,5 42.2
average block 3,4,5 42.8
average block 4,5 42.5

average block 3,4 37.97

Table 3. Effects by input image size
and multi-scale aggregation.

input image size mean IoU

(1) 300 × 300 34.5
(2) 400 × 400 41.0
(3) 500 × 500 42.4
(4) 600 × 600 41.8
(5) 700 × 700 40.0
(6) 800 × 800 34.5

average (1),(2),(3) 41.1
average (2),(3) 42.9
average (2),(3),(4) 43.5
average (3),(4) 42.9
average (3),(4),(5) 42.5
average (3),(4),(5),(6) 42.8

Table 4. Effects on the number of raw class maps
for subtraction.

class N 0 1 2 3 4 5 10 15

mean IoU 38.2 42.2 43.5 44.1 44.2 44.0 43.7 43.3

Table 5. Effects on the
way of back-propagation.

method BP GBP

mean IoU 41.2 44.1

the best. Although Block 5 itself was less effective, adding Block 5 to combina-
tions was effective to boost performance. This shows that aggregation of CNN
derivatives extracted from multiple upper layers is the better choice.
Size of input images Because we use fully convolutional CNN which can
deal with arbitrary-sized input images, we examined the effects on input image
size and multi-scale combination of input images. Note that we used bilinear
up-scaling when the size of the original images were less than the indicated
size. Table 3 shows the results, which indicates 500 × 500 was the best, and the
combination of 400 × 400, 500 × 500 and 600 × 600 was the best. This is partly
because we used training images with random resizing from 350 to 700 pixels.
From these results, multi-scale aggregation helped boost performance.
Minimum number of the raw class maps for subtraction We use the
raw class saliency maps of the top-N classes for raw class map subtraction which
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Table 6. Results on PASCAL VOC 2012 val set.
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Weakly Supervised:
MIL-FCN [20] - - - - - - - - - - - - - - - - - - - - - 25.7
EM-Adapt [22] - - - - - - - - - - - - - - - - - - - - - 38.2

CCNN [21] 65.9 23.8 17.6 22.8 19.4 36.2 47.3 46.9 47.0 16.3 36.1 22.2 43.2 33.7 44.9 39.8 29.9 33.4 22.2 38.8 36.3 34.5
MIL-sppxl [18] 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6
MIL-bb [18] 78.6 46.9 18.6 27.9 30.7 38.4 44.0 49.6 49.8 11.6 44.7 14.6 50.4 44.7 40.8 38.5 26.0 45.0 20.5 36.9 34.8 37.8
MIL-seg [18] 79.6 50.2 21.6 40.6 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0

DCSM w/o CRF (ours) 72.5 35.0 23.7 33.6 20.9 32.8 57.6 49.2 51.4 14.7 42.9 32.8 51.9 43.1 53.2 47.6 35.2 47.7 28.6 40.3 36.7 40.5
DCSM w/ CRF (ours) 76.7 45.1 24.6 40.8 23.0 34.8 61.0 51.9 52.4 15.5 45.9 32.7 54.9 48.6 57.4 51.8 38.2 55.4 32.2 42.6 39.6 44.1

Table 7. Results on PASCAL VOC 2012 test set.
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Fully Supervised:
O2P [30] 85.4 69.7 22.3 45.2 44.4 49.6 66.7 57.8 56.2 13.5 46.1 32.3 41.2 59.1 55.3 51.0 36.2 50.4 27.8 46.9 44.6 47.6
SDS [8] 86.3 63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5 51.6

FCN-8s [10] - 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
Zoom out [11] 89.8 81.9 35.1 78.2 57.4 56.5 80.5 74.0 79.8 22.4 69.6 53.7 74.0 76.0 76.6 68.8 44.3 70.2 40.2 68.9 55.3 64.4
DeepLab [3] 93.1 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

CRF as RNN [4] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 72.0 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

Size tag Supervised:
CCNN w/size [21] - 42.3 24.5 56.0 30.6 39.0 58.8 52.7 54.8 14.6 48.4 34.2 52.7 46.9 61.1 44.8 37.4 48.8 30.6 47.7 41.7 45.1

Weakly Supervised:
MIL-FCN [20] - - - - - - - - - - - - - - - - - - - - - 24.9
EM-Adapt [22] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6

CCNN [21] - 21.3 17.7 22.8 17.9 38.3 51.3 43.9 51.4 15.6 38.4 17.4 46.5 38.6 53.3 40.6 34.3 36.8 20.1 32.9 38.0 35.5
MIL-ILP-seg [18] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6

DCSM w/o CRF (ours) 73.9 34.1 24.4 39.6 18.0 37.6 57.8 49.0 51.5 13.3 42.3 33.5 47.8 44.2 63.7 44.3 34.5 48.3 31.2 35.7 37.1 41.0
DCSM w/ CRF (ours) 78.1 43.8 26.3 49.8 19.5 40.3 61.6 53.9 52.7 13.7 47.3 34.8 50.3 48.9 69.0 49.7 38.4 57.1 34.0 38.0 40.0 45.1

are estimated by feed-forward multi-class classification1 of the input image in
addition to the maps of the classes the output scores of which are more than
the pre-defined threshold, 0.5. We examined effects on the top-N varying N .
Note that exceptionally N = 0 means that subtraction was never carried out,
that is, the results without subtraction. As shown in Table 4, using the top-4
(N = 4) raw class maps was the best2. Compared with N = 0, subtraction is
always helpful to raise segmentation performance.
Guided BP vs. BP We compared normal back propagation (BP) used in Si-
monyan et al. [1] with guided back propagation (GBP) proposed by Springenberg
et al. [23]. GBP was better than BP as shown in Table 5.

4.5 Comparison with Other Methods

In the final subsection, we compare our results (DCSM) with other results by
CNN-based methods quantitatively. Table 6 and Table 7 show the results for
PASCAL VOC 2012 val set and test set, respectively.

While MIL-FCN [20], EM-Adapt [22], CCNN [21] and our methods used
PASCAL VOC training data and augmented training data provided by [28],
1 The classification accuracy of multi labels by the fine-tuned VGG-16 was 85.2%.
2 We used N = 3 in all the other experiments to save computation.
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MIL-{sppxl,bb,seg} by Pedro et al.[18] used their original additional training
images which contains 700,000 images. Our method is different from other meth-
ods in terms of the way to use a CNN. While the existing methods employed
only feed forward computation [20,18,22,21], we use backward computation as
well as feed forward computation. Although the way to train CNN is the same
as MIL-FCN [20] and MIL-{sppxl,bb,seg} [18], the method to localize objects is
essentially different.

As shown in the tables, our results by DCSM with CRF outperformed all the
val and test results by the weakly-supervised methods including MIL-{sppxl,bb,seg}
which used about 70 times as many training images with the margin, 2.1 points
and 4.5 points, respectively. Note that “CCNN w/size” used additional infor-
mation on size of training images, the mean IoU of which was equivalent to
ours.

In Table 7, we also compared our results with the fully supervised meth-
ods. Our result is close to the result by one of the best non-CNN-based fully
supervised method, O2P [30]. Their difference is only 2.5 points.

Finally, we show qualitative results by the proposed method without/with
Dense CRF in Fig.7.

5 Conclusions

In this paper, we proposed a new weakly-supervised semantic segmentation
method consisting of a novel method of class saliency map estimation and Dense
CRF. The proposed distinct class saliency maps (DCSM) outperformed the maps
by Simonyan et al. [1] both qualitatively and quantitatively. The experimental
results proved the effectiveness of the proposed method, which achieved the
state-of-the-arts on the PASCAL VOC 2012 weakly supervised segmentation 3.

Fig. 7. Qualitative results on VOC 2012. Each row shows (left) input image, (middle
left) results estimated from class maps, (middle right) results after applying FC-CRF,
and (right) groundtruth. Please see the supplementary material for more results.

3 At the time of publishing of this paper, the two works published as arXiv pa-
pers [31,32] achieved the state-of-the-art results which were more than 50% on the
PASCAL VOC 2012.
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