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Introduction: Food & Deep

•Food image recognition :

– One of important topics in CEA community

– Helpful for food habit recording. 

•Deep Convolutional Neural Network: 

– Best image classification method at present

•ILSVRC, Pascal VOC, MIT-SUN, Caltech-101/256,..

How about food datasets such as 
UEC-Food101/256 and ETH Food-101 ?



FoodCam : [Kawano et al. MTA13]

•Real-time mobile food recognition  
Android application

http://foodcam.mobi/

http://foodcam.mobi/


Objectives of this work

•[Experiments] 
Introduce deep convolutional neural 
networks (DCNN) into food image 
classification task 

•Examine its effectiveness

•[Application] 

•Apply DCNN-based food classifier to 
Twitter food photo mining .



Deep Convolutional Neural 
Network (DCNN)
• The most common network architecture for 

image classification: AlexNET proposed by 
Alex Krizhevsky in ILSVRC2012.
Alex Krizhevsky, I.Sutskever, J. Hinton : ImageNet Classification with Deep 

Convolutional Neural Networks, NIPS 2012. 
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We use this in this work.



Deep Convolutional Neural Network

•Consists of convolutional layers and full 
connection layers. 

Convolutional layers Full-connection layers

⇒ Feature extraction part ⇒ classification part



Most activated location on 3rd

conv. layer



[Exisiting works]
DCNN with Food Dataset

•[Kawano et al. CEA2014] 

– DCNN activation features 
(pre-trained with ILSVRC data)

– UEC-FOOD100:   FV: 65.32%

•DCNN 57.87%, DCNN+FV: 72.26% (best so far)

•Other work: 

– [Kagaya et al. MM2014] 10 kinds of foods
with DCNN trained from scratch

– [Bossard et al. ECCV2014] ETH-Food101
with AlexNet from scratch



1. Train DCNN from scratch

– Need large number of training images (1000～)

– Take long time to train. (～1 week)

2. Use activation features of pre-trained DCNN

– Extract activation signals from the previous layer 
of the last one, and use them as visual features

– Easiest among three. (by using Caffe or Overfeat)

3. Fine-tune a pre-trained DCNN 
using non-large-scale dataset

– Even small data can improve performance over(2)

Three ways to use DCNN 
Kagaya et al. , Bossard et al.

Kawano et al.

４０９６-dim vector
(L2 normailized)

Not explored yet



Introducing pre-training with 
non-ILSVRC and Fine-tuning

•Existing works: training from scratch or 
using pre-trained model with ILSVRC

•Pre-training with food-related   
ImageNet categories

•Fine-tuning 

Two kinds of extensions



•ILSVRC2012

– Large Scale Visual Recognition Challenge

– one thousand training images per category

– Generic 1000 categories 

– few food categories

DCNN pre-training Datasets

DCNN pre-trained with the dataset containing
more food-related categories is desirable.



•Select 1000 food-related categories
from ImageNet

– List up all the word under “food” in the 
ImageNet hierarchy

– 1526 synsets related to “food”

– Exclude synsets included in ILSVRC dataset

– Select the top 1000 synsets in terms of # 
of images in ImageNet

DCNN pre-training Datasets
containing more foods

* ImageNet 2011 Fall release



•ImageNet2000 categories

– 1000 food-related categories from ImageNet

– ImageNet1000 (ILSVRC) categories

= 2000 categories

DCNN pre-training Datasets



•DCNN Features with ImageNet 2000 categories

– Using Caffe

– The dimension of full connection layers is modified 
from 4096 to 6144, since the output dimension is 
raised from 1000 to 2000.

•Training time

– About one week (training from scratch)

– GPU, Nvidia Geforce TITAN BLACK, 6GB

Pre-training with ImageNet2000



Fine-tuning with small dataset

•Modify the size of the last layer (2000⇒100)

•Re-train only weight parameters of full 
connection layers (L6,7,8)

•Weights from L1-5 are fixed 

100100



Fine-tuning

Feature extraction part Classification part

•It enables DCNN to be trained with small 
data.

•Feature extraction parts are trained with 
large-scale data such as ImageNet.

•Classification parts are trained with small-
scale target data.



•UEC-FOOD100/256 dataset
– 100 / 256 food categories (Japanese and Asian)

– More than 100 images for each category

– Bounding box information for all the images

•ETH Food-101 [Bossard et al. ECCV2014]

– 101 categories, 1000 images for each category
(mainly western and partly Japanese)

– Collecting from http://www.foodspotting.com/

– 20 categories are overlapped with UEC-FOOD100

Experiments: Food dataset

http://www.foodspotting.com/


UEC-FOOD 100



UEC-FOOD 100



UEC-FOOD 100



UEC-FOOD 100



UEC-FOOD 100



FoodRec: foodrec app with UECFOOD100
by Hamlyn Centre-Imperial College(UK)



ⓒ 2014 UEC Tokyo.

UEC-FOOD as a Fine-Grained 

Image Classification Dataset



UEC-FOOD 256



UEC-FOOD 256



UEC-FOOD 256



UEC-FOOD 256



ETH-Food101
•Sushi

•Takoyaki

•Ramen



•Conventional baseline features

– Root HOG patch and Color patch

– Fisher Vector (FV)

– SPM level2 (1x1+3x1+2x2)

– 32768-dim RootHOG-FV

– 24576-dim Color-FV

•Classifiers

– 1-vs-rest multiclass linear SVM

•Evaluation: 5fold cross-validation

Baseline features & classifiers



Results: UEC-FOOD100

# of candidates
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Results: UEC-FOOD256
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Results on ETH-Food101

•Fine-tuned DCNN with 
ImageNet+food1000 pretraining
achived the best results. 



•Pre-training with ImageNet + Food1000
is effective.

•Fine-tuning can improve performance over 
Pre-training DCNN + FV.

•Fine-tuning the DCNN which was pre-trained 
with ImageNet1000 + Food1000 is the best.

Summary



Comments:

•For further improvements

– Using deeper network (VGG16 or 
GoogLeNet) instead of Alexnet

– Fusing DCNN-FOOD(ft) with FV

•Both are not examined yet.
– (Because the second author graduated…)



Apply DCNN-FOOD(ft)
to Twitter Real-time 
Food Photo Mining

Keiji Yanai and Yoshiyuki Kawano: Twitter Food Image Mining and Analysis for 
One Hundred Kinds of Foods , Pacifit-Rim Conference on Multimedia (PCM), 
(2014).

Yoshiyuki Kawano and Keiji Yanai, FoodCam: A Real-time Food Recognition 
System on a Smartphone, Multimedia Tools and Applications (2014). (in 
press) (http://dx.doi.org/10.1007/s11042-014-2000-8)

http://dx.doi.org/10.1007/s11042-014-2000-8


Twitter Real-time Food Photo 
Mining System (mm.cs.uec.ac.jp/tw/)

•What kinds of foods are being eaten in Japan ?

http://mm.cs.uec.ac.jp/tw/


Objective

•Twitter Photo Mining for Food Photos

– As a case study of Twitter Photo Mining 
on specific kinds of photos 

– Food is one of frequent topics of Twitter Photos.

– Real-time Photo Collection from the stream

•To collect more food photos for training

– Twitter is a good source of food photos.

– Unlike “FoodLog”, we have no users who upload 
their food photos regularly. Twitter is alternative.



Preparation

•Add “non-food” category to the best 
classifier (FOOD-DCNN(ft)).

•Prepare 10000 non-food samples 
gathered from Twitter by 100 food names

•Fine-tuning with 101 category. 

•Food/non-food classification: 98.86%



Approach for food photo mining

•[old] Three-step food photo selection

[new] Two-step food photo selection

Keyword-
based 

selection

Food/non-
food 

classification

100-foods 
classification

Image-based analysis

Keyword-
based 

selection

101-foods 
classification



Experiments

•Collect photo tweets via Twitter Streaming 
API
– From 2011/5 to 2013/8

– About one billion tweets 

•Search for the tweets including any of 100-
food names (in Japanese) 

– 1.7 million ⇐ Apply food image classifier

– 0.03 image/classification w/GPU
(4 hours by 4 GPU machines) 



rank foods #photos

1 Ramen noodle 80,021

2 Curry 59,264

3 Sushi 25,898

4 Dipping noodle (tsukemen) 22,158

5 Omelet 17,520

6 Pizza 16,921

7 Jiaozi 16,014

8 Okonomiyaki 15,234

Twitter food photo ranking

Ramen noodle is the most popular food in Japan. 
I have solved “ramen vs curry” problem !!!



Precision of the top 5 foods
Food raw FV-based DCNN

ramen 275,652
72.0%

80,021
99.7%

132,095
99.5%

curry 224,685
75.0%

59,264
99.3%

68,091
100.0%

sushi 86,509
69.0%

25,898
92.7%

224,908
99.8%

tsukem
en

33,165
88.7%

22,158
99.0%

22,004
100.0%

omelet 34,125
90.0%

17,520
99.0%

20,039
99.9%



Only keyword search
(Ramen noodle) (72.0%)



After applying 100-class food 
classifier (final)(99.5%)



Only keyword search (curry)
(75.0%)



Final results (curry) (100%)



Final results (omelet) (99.9%)





Misclassified photos



Geographical-Temporal analysis 
on   ramen vs curry 

Ramen       Curry        

Whole year Dec. (winter) Aug. (summer)
Ramen is popular. Curry gets more popular

than ramen in many areas.

12.6% of the obtained food photos have geotag.



Utilization of large number of 
food photos: Omerice analysis

•Omerice-style classification 

– Classification rate: 84.184％

letters      drawing  texture   source   plain  



認識結果：
各1000枚で学習．1500枚を分類

分類先⇒ 文字 絵 模様 ソース プレーン

文字 85.6 10.0 3.1 1.1 0.1 

絵 9.9 84.2 3.5 1.9 0.5 

模様 3.1 5.7 80.7 8.8 1.6 

ソース 1.2 1.9 6.9 86.5 3.5 

プレーン 0.0 2.9 0.0 15.8 81.3 



Real-time Food Collection

•Monitor the Twitter stream

– Photo Tweet

– Text including any of 100 food names

•13 candidate photo tweets / minute on avg.

•Download: 2～3sec. , recognition: ～1sec.

•Single machine is enough !

•Recognize 20,000 photos and
find 5,000 food photos from the TW 
stream  everyday in our lab



Demo visualization system

•Map each food photo on an online map
with online clustering [Yanai ICMR2012]

– Geotagged Tweets 

– Non-geotagged Tweets for which GeoNLP can 
assign locations based on text msg.

•Overlay a food photo on the Streetview

– Finding “ramen noodle shop” game !

http:/mm.cs.uec.ac.jp/tw/



Twitter Food Image Bots

 Bot who recognize food
photos and return results 

 @foodimg_bot

 Bot who re-tweets food 
photo tweets automatically



DeepFoodCam

•DCNN-based food rec. app

– Network-in-network(NIN) instead of AlexNet

– PQ-based weight compression (7MB ⇔ 256MB)

Release soon 
at http://foodcam.mobi/



•Food recognition with DCNN features

– Pre-trained DCNN with ImageNet2000 categories

– Fine-tuned the pre-trained DCNN with UEC-FOOD

•Achieved the best performance so far

– UEC FOOD-100: 78.48%

– UEC FOOD-256: 94.85%

•We showed the effectiveness for the 
application, Twitter food photo mining

Conclusions



Future works

•CNN-based food region segmentation



Thank you

for your attention !
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2.1 group and some food categories
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2.1 group and some food categories
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2.1 group and some food categories
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2.1 group and some food categories
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2.1 group and some food categories
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クラウドソーシング体験課題
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【復習】





大規模画像認識のための
標準ネットワーク構成 : Alex Net
• ILSVRC 2012 で，Alex Krizhevskyらが用い

たネットワーク構成．
– Alex Krizhevsky, I.Sutskever, J. Hinton : ImageNet

Classification with Deep Convolutional Neural 
Networks, NIPS 2012. 

• 2013，2014はどのチームもこれをベースに改良，拡張．
⇒ 事実上の標準ネットワーク．
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Convolutional network

•前半が畳み込み層(convolutional layer),
後半が昔と同じ全結合層(full 
connection)
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Convolutional layer Full-connection layer


