

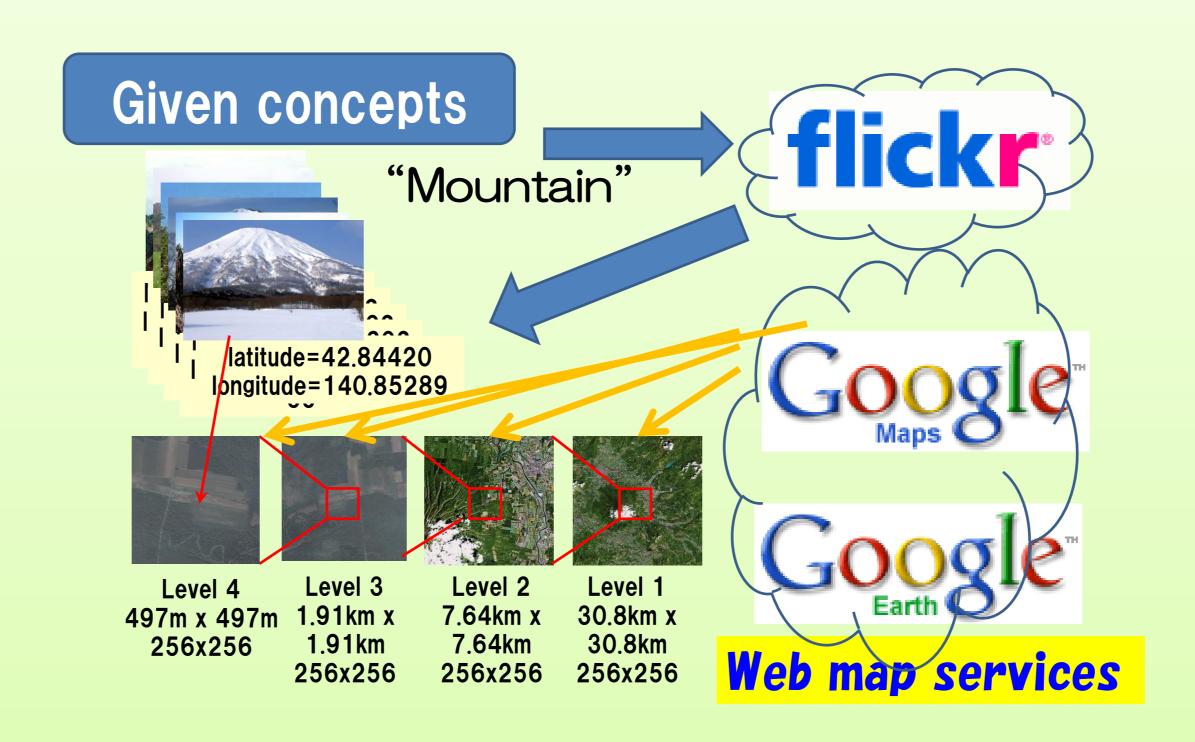
Geotagged Photo Recognition using Corresponding Aerial Photos with Nultiple Kernel Learning

The University of Electro-Communications, Tokyo, JAPAN Keita Yaegashi and Keiji Yanai

Background & Objective

• Geotagged Photos are easy to obtain.

Data Collection



Experiments

- 1/0 classification for 18 classes by 5-fold cross validation
- 200 positive & 200 negative images for_each class
- Evaluated by average precision

(I) Location concepts

latitude=23.23202 latitude=37.24423 latitude=40.84423 latitude=42.84422 longitude=143.89249 longitude=137.68353 longitude=140.85289 longitude=135.18353

geotag = (latitude, longitude)

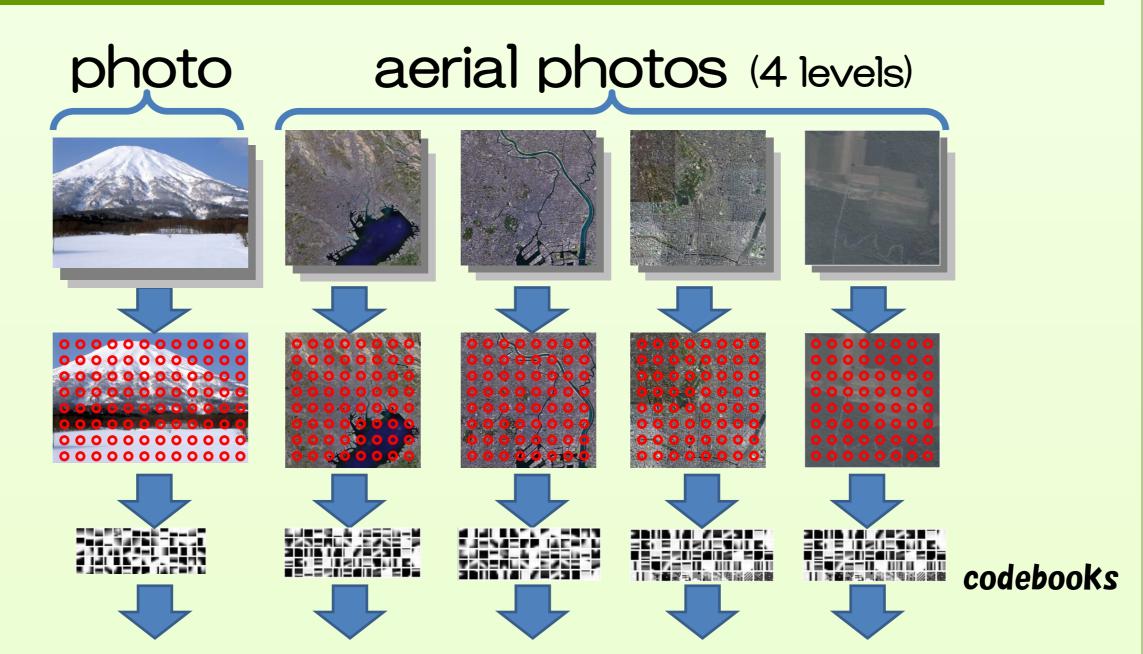
Can a geotag help image recognition?

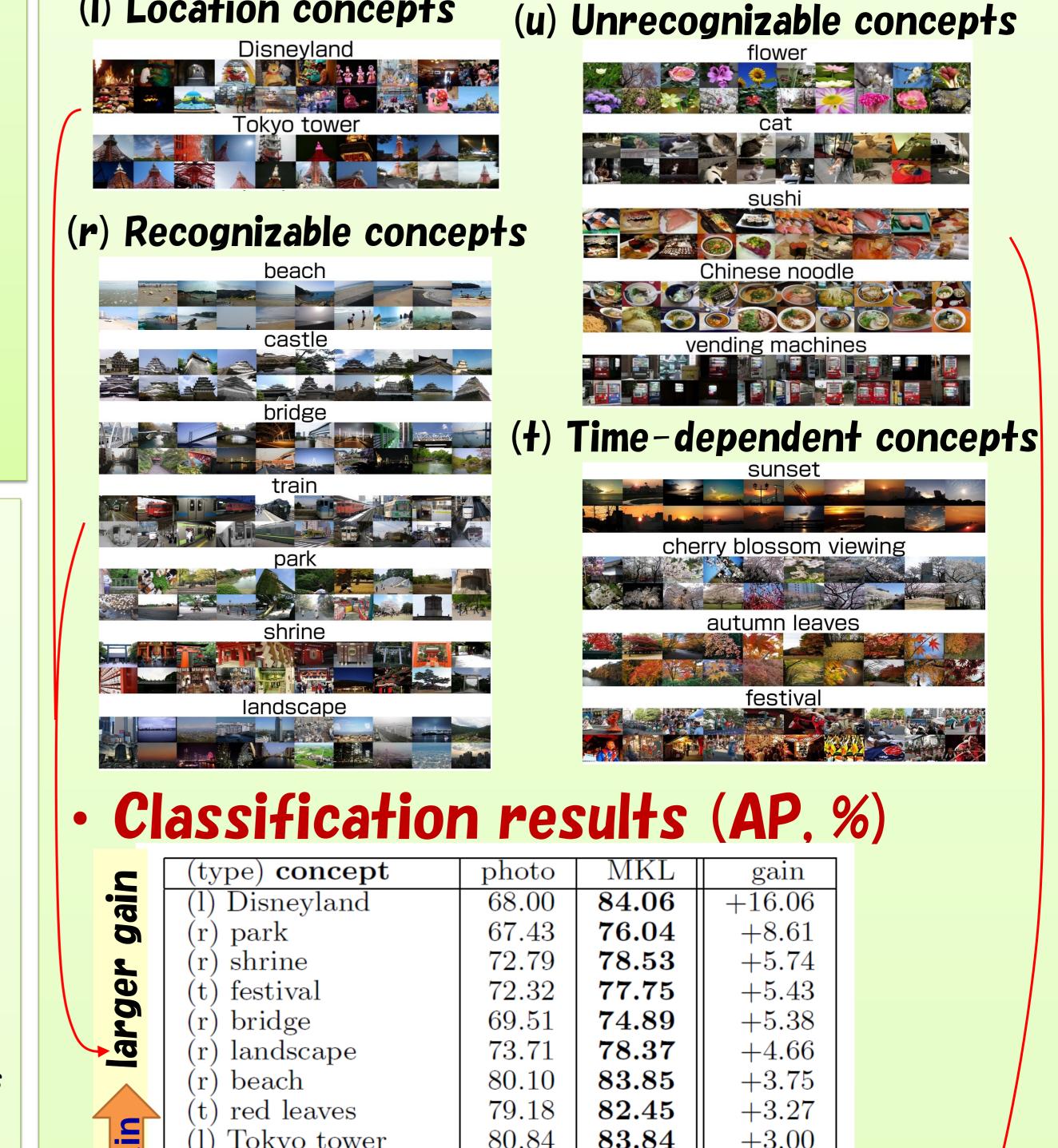
when using them as 2D vectors. No !

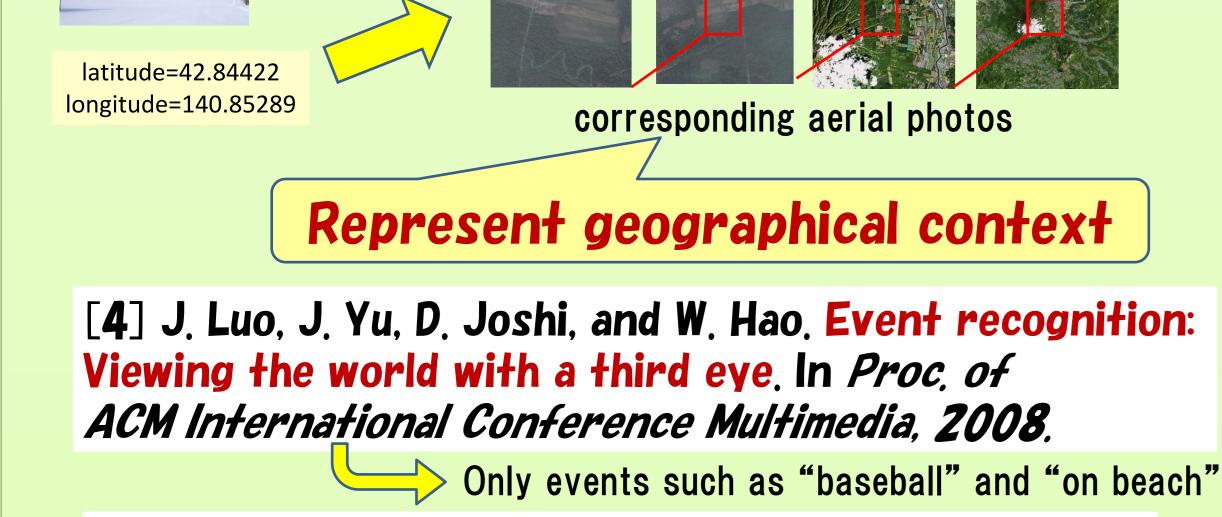
Yes ! It can help image recognition by converting it into aerial photos. shown by the following two papers.

Gather 4 levels of aerial photos for each geotagged photo.

Features







[7] K. Yaegashi and K. Yanai. Can geotags help image recognition ? In *Proc. of Pacific-Rim Symposium* on Image and Video Technology, 2009.

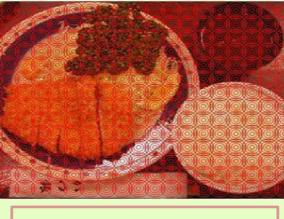
> 10 categories. Fusion by concatenating both feature vectors.

Questions ?

1) To what extent can geotags help? 2) What Kinds of categories are geotags effective for ?

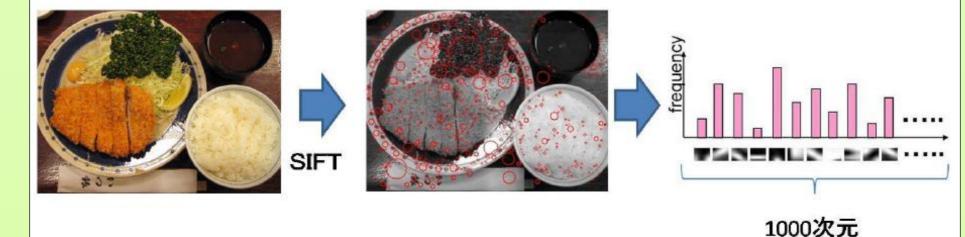
We evaluate the contribution of aerial photos for image recognition by using

Bag-of-features (BoF) (local pattern) (1) Sample points by grid sampling (every 10px)



Grid sampling

(2) Describe local patterns around the sampled points with SIFT [Lowe 2004] (3) Generate codebooks by K-means (size of a codebook: 1000) (4) Convert images into BoF vectors by voting to nearest codewords



Five BoF vectors for each image

	(1) 10Ky0 t0we1	00.04	00.04	± 3.00	
da da	(\mathbf{r}) castle	81.28	83.53	+2.23	
	(u) sushi	80.11	81.93	+1.82	
C	(r) railroad	74.70	76.20	+1.50	
gain	(u) flower	77.00	78.48	+1.48	
90	(t) cherry blossom	80.94	81.61	+0.67	
	(\mathbf{u}) ramen noodle	82.34	82.70	+0.36	
e	(\mathbf{u}) cat	73.98	74.26	+0.28	
	(u) vendor machine	83.17	83.43	+0.26	
smaller	(t) sunset	83.01	83.11	+0.10	
S	AVERAGE	76.69	80.28	+3.59	

Contribution weights by MKL

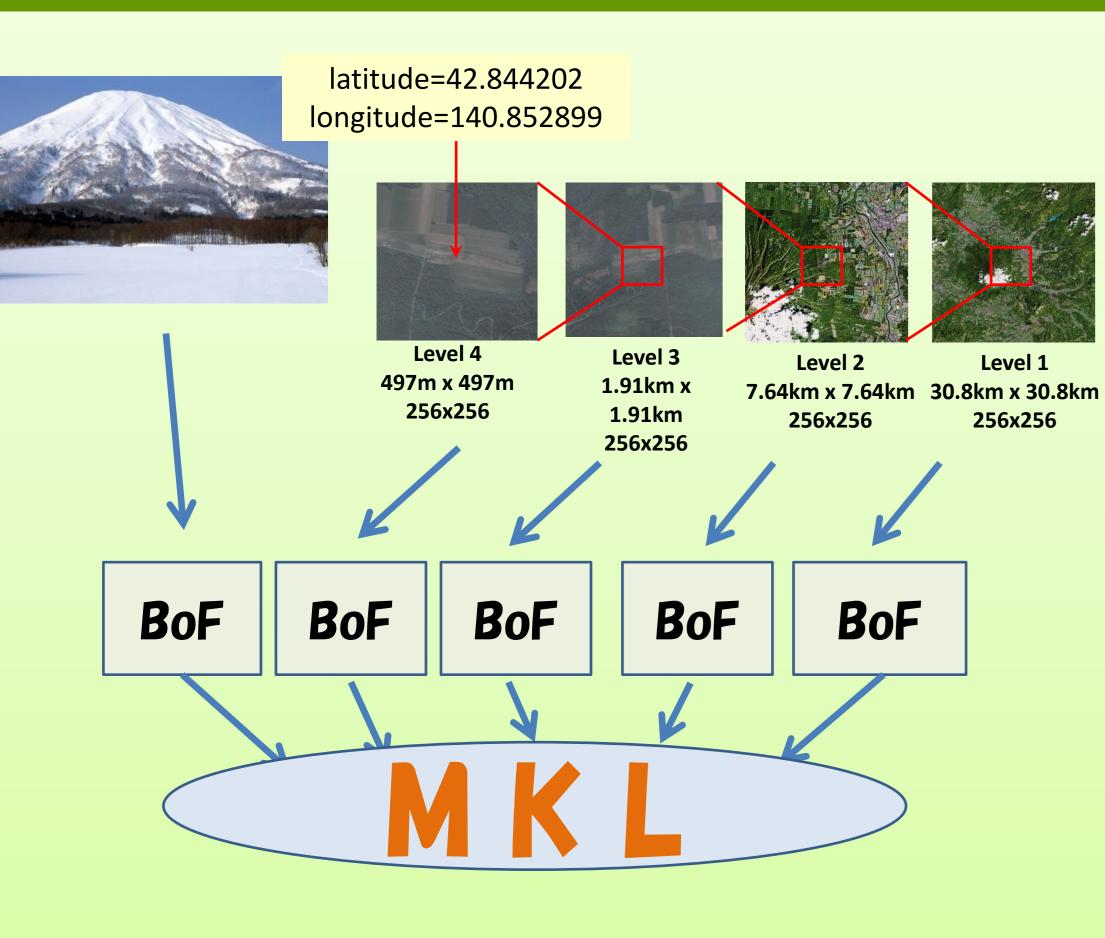
	(type) concept	photo	level1	level2	level3	level4
hotos	(u) ramen noodle	0.873	0.002	0.000	0.037	0.088
4	(u) vendor machine	0.794	0.058	0.009	0.074	0.065
	(t) cherry blossom	0.774	0.038	0.006	0.093	0.090
	(\mathbf{u}) cat	0.743	0.028	0.008	0.063	0.158
	(t) sunset	0.729	0.055	0.058	0.016	0.142
C	(u) flower	0.658	0.000	0.042	0.051	0.249
0	(r) railroad	0.604	0.106	0.014	0.052	0.224
nti	(r) landscape	0.604	0.078	0.024	0.093	0.199
	(u) sushi	0.596	0.062	0.015	0.062	0.266
t						

00	(type) concept	photo	level1	level2	level3	level4	
57	(r) bridge	0.582	0.077	0.044	0.070	0.226	
	(t) red leaves	0.523	0.141	0.006	0.062	0.269	
SO	(r) castle	0.523	0.166	0.004	0.099	0.208	
040	(t) festival	0.518	0.058	0.001	0.185	0.238	
Чd	(r) shrine	0.507	0.033	0.009	0.061	0.391	
	(r) park	0.437	0.073	0.012	0.045	0.433	
ria	(r) beach	0.392	0.115	0.173	0.055	0.265	
5	(1) Disnevland	0.384	0.095	0.236	0.131	0.153	

0.364

Multiple Kernel Learning (MKL).

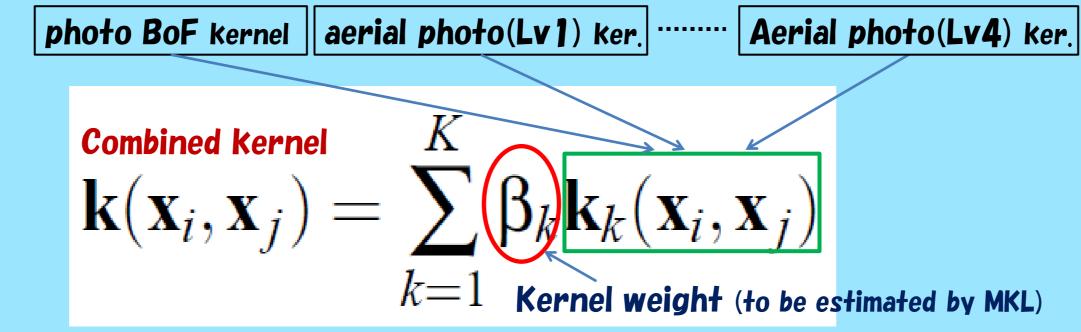
Method



Learning & Classifying

- Multiple Kernel Learning
 - Is an extension of a SVM.
 - Can handle "a combined kernel" which is a linear combination of Kernels.
- Can estimate Kernel weights and SVM model parameters simultaneously.
- Can integrate features by assigning one feature to one Kernel.

Combined Kernel



Conclusions

0.008

0.002 0.396 0.231

Analyzed contribution ratios of aerial images for image recognition using Multiple Kernel Learning (MKL) -AP was improved by 3.59 % on average -Much help to "location concepts" and "recognizable concepts" -Less help to other kinds of concepts

-Detailed aerial photos are more helpful

Future work

• More categories

Tokyo tower

- More features (e.g. color, HoG, Gabor)
- Other geo-info (e.g. geo-text: country) name, area name, GIS-info: population...)