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Abstract

In this paper, we treat with generic object recogni-
tion for geotagged images. As a recognition method
for geotagged photos, we have already proposed ex-
ploiting aerial photos around geotag places as addi-
tional image features for visual recognition of geo-
tagged photos. In the previous work, to fuse two
kinds of features, we just concatenate them. In-
stead, in this paper, we introduce Multiple Kernel
Learning (MKL) to integrate both features of photos
and aerial images. MKL can estimate the contri-
bution weights to integrate both kinds of features.
In the experiments, we confirmed effectiveness of
usage of aerial photos for recognition of geotagged
photos, and we evaluated the weights of both fea-
tures estimated by MKL for eighteen concepts.

1 Introduction

Recently, the number of geotagged photos on
the Web is increasing rapidly, since people can see
geotagged photos uploaded to some photo sharing
Web sites on a map. Geotags for photos are easy
to obtain with GPS-equipped cameras or carry-
ing portable small GPS devices with digital cam-
eras. Here, “geotag” means a two-dimensional vec-
tor consisting of values of latitude and longitude
which represent where a photo is taken.

In this paper, we exploit geotags as additional in-
formation for visual recognition of consumer photos
to improve its performance. Geotags have potential
to improve performance of visual image recognition,
since recognition targets are unevenly distributed in
the real world. For example, “beach” photos can be
taken near the sea and “lion” photos can be taken
only in a zoo except Africa. In this way, geotags
can restrict concepts to be recognized for images,
so that we expect geotags can help visual image
recognition.

To utilize geotags in visual image recognition, we
have already proposed two methods in [7]: (1) com-
bining values of latitude and longitude with visual
features of a photo image, and (2) combining visual
feature extracted from aerial photo images with vi-
sual feature extracted from a photo image.

The method (1) is relatively straightforward way,
and it improved recognition performance only for
concepts associated with specific places such as

“Disneyland” and “Tokyo tower” in the experi-
ments of [7].

On the other hand, in the method (2), we utilize
aerial photo images around the place where a photo
was taken as additional information on the place.
Since “sea” and “mountain” are distributed all over
the world, it is difficult to associate values of lati-
tude and longitude with such generic concepts di-
rectly. Then, we regard aerial photo images around
the place where the photo is taken as the infor-
mation expressing the condition of the place, and
utilize visual feature extracted from aerial images
as yet another geographic contextual information
associated with geotags of photos. Especially, for
geographical concepts such as “sea” and “moun-
tain”, using feature extracted from aerial photos
was much more effective than using raw values of
latitude and longitude directly [7].

Since in the method (2) of [7] we combine two
kinds of feature vectors by simply concatenating
them into one long vector, the extent of contribu-
tions of aerial photos for geotagged photo recog-
nition was unclear. They are expected to vary de-
pending on target concepts. For the concepts which
can be directly recognized from aerial photos such
as “beach” and “mountain”, the contribution of
aerial photos is expected to be much, while it is
expected to be less for the unrecognizable concepts
from aerial photos such as “flower” and “cat”. In
this paper, we introduce Multiple Kernel Learning
(MKL) to evaluate contribution of both features for
recognition by estimating the weights of image fea-
tures of photos and aerial images. MKL is an exten-
sion of Support Vector Machine (SVM), and makes
it possible to estimate optimal weights to integrate
different features with the weighted sum of kernels.
In the experiments, we evaluate the weights of both
features using MKL for eighteen concepts.

As related work, J. Luo et al.[4] is the most sim-
ilar to our work. They also proposed to exploit
aerial photos corresponding to where a photo was
taken for recognizing geotagged photos. However,
they focused only event concepts such as “base-
ball”, “at beach” and “in park”, which can be di-
rectly recognized from aerial photos, and did not
evaluate the contribution of aerial images for recog-
nition with various kinds of concepts.

The rest of this paper is organized as follows:
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Figure 1. Correspondences between a geotagged photo and aerial images.

Section 2 and 3 explains the overview and the pro-
cedure of geotagged image recognition with MKL,
respectively. Section 4 shows the experimental re-
sults and discusses them, and we conclude this pa-
per in Section 5.

2 Overview

The objective of this paper is to evaluate the con-
tribution weights of both visual features of photo
images and aerial images for image recognition us-
ing Multiple Kernel Learning (MKL) regarding var-
ious kinds of concepts. In this paper, we assume
that image recognition means judging if an image
is associated with a certain given concept such as
“mountain” and “beach”, which can be regarded as
a photo detector for a specific given concept. By
combining many detectors, we can add many kinds
of words as word-tags to images automatically.

As representation of photo images, we adopt the
bag-of-features (BoF) representation [1]. It has
been proved that it has excellent ability to repre-
sent image concepts in the context of visual image
recognition in spite of its simplicity. As represen-
tation of geotags, we also adopt the bag-of-features
representation of aerial photos around the geotag
location.

After obtaining feature vectors, we carry out two-
class classification by fusing both visual feature vec-
tors with MKL. In the training step of MKL, we
obtain optimal weights to fuse both features.

3 Methods

In this section, we describe how to recognize im-
ages with visual features and geotags. First of all,
we need to decide several concepts for the experi-
ments.

3.1 Data Collection
In this paper, we obtain geotagged images for

the experiments from Flickr by searching for images
which have word tags corresponding to the given
concept. Since the raw images fetched from Flickr
include some noise images which are irrelevant to
the given concepts, we select only relevant images
by hand. In the experiments, relevant images are
used as positive samples, while randomly-sampled
images from all the geotagged images fetched from
Flickr are used as negative samples. We select 200
positive samples and 200 negative samples for each
concept.

After obtaining geotagged images, we collect
aerial photos around the points corresponding to
the geotags of the collected geotagged image with
several scales from an online aerial map site. In the
experiments, we collect 256 × 256 aerial photos in
four different kinds of scales for each Flickr photo
as shown in Figure 1. The largest-scale one (level
4) corresponds to an area of 497 meters square, the
next one (level 3) corresponds to an area of 1.91
kilometers square, the middle one (level 2) corre-
sponds to a 7.64 kilometer-square area, and the
smallest-scale one (level 1) corresponds to a 30.8
kilometer-square area.

3.2 Visual Features
To extract visual feature vectors from pho-

tos and aerial images, we use the bag-of-features
method [1]. The main idea of the bag-of-features is
representing images as collections of independent
local patches, and vector-quantizing them as his-
togram vectors.

The main steps to build a bag-of-features vector
are as follows:

1. Sample many patches from all the images. In
the experiment, we sample patches on a regular
grid with every 10 pixels.

2. Generate local feature vectors for the sampled
patches by the SIFT descriptor [3] with four
different scales: 4, 8, 12, and 16.

3. Construct a codebook with k-means clustering
over extracted feature vectors. We construct a
codebook for photo images for each given con-
cept independently, while we construct a code-
book for aerial images which is common among
all the aerial images for any concepts. We set
the size of the codebook k as 300 in the exper-
iments.

4. Assign all feature vectors to the nearest code-
word (visual word) of the codebook, and con-
vert a set of feature vectors for each image into
one k-bin histogram vector regarding assigned
codewords.

3.3 Multiple Kernel Learning
In this paper, we carry out two-class classifi-

cation by fusing visual features of photo images
and aerial images with Multiple Kernel Learning
(MKL). MKL is an extension of a Support Vector
Machine (SVM). MKL treats with a combined ker-
nel which is a weighted liner combination of several



single kernels, while a standard SVM treats with
only a single kernel. MKL can estimates optimal
weights for a linear combination of kernels as well as
SVM parameters simultaneously in the train step.
The training method of a SVM employing MKL is
sometimes called as MKL-SVM.

Recently, MKL-SVM is applied into image recog-
nition to integrate different kinds of features such
color, texture and BoF [6, 2]. However, the recent
work employing MKL-SVM focuses on fusion of dif-
ferent kinds of features extracted from the same im-
age. This is different from our work that MKL is
used for integrating features extracted from the dif-
ferent sources, which are photos and aerial images.

With MKL, we can train a SVM with a
adaptively-weighted combined kernel which fuses
different kinds of image features. The combined
kernel is as follows:

Kcomb(x,y) =
K∑

j=1

βjKj(x,y) with
K∑

j=1

βj = 1,

where βj is weights to combine sub-
kernels Kj(x,y). As a kernel function, we
used a chi-square RBF kernel.

Sonnenburg et al.[5] proposed an efficient algo-
rithm of MKL to estimate optimal weights and
SVM parameters simultaneously by iterating train-
ing steps of a standard SVM. This implementation
is available as the SHOGUN machine learning tool-
box at the Web site of the first author of [5]. In the
experiment, we use the MKL library included in the
SHOGUN toolbox as an implementation of MKL.

4 Experiments

In the experiments, we used eighteen concepts.
To selected the eighteen concepts, we first define
four rough types of concepts and then select several
concepts for each type as follows:

Location-specific concept (l) [2 concepts]
Disneyland, Tokyo tower
The locations related to these concepts are

specific to them. Since all the aerial photos
related to these concepts are similar to each
other, using aerial photos are expected to im-
prove recognition performance much.

Recognizable concept (r) [7 concepts]
beach, castle, bridge, railroad, park, shrine,
landscape
Since there are possibility of recognizing these
concepts on aerial photos directly, improve-
ment of performance is expected.

Unrecognizable concept (u) [5 concepts]
flower, cat, sushi, ramen noodle, vendor ma-
chine
These concepts are very difficult to recognize

on aerial images.
Time-dependent concept (t) [4 concepts]

sunset, cherry blossom, red leaves, festival

These concepts depend on time or seasons
rather than locations.

Location-specific and recognizable concepts are ex-
pected to have correlation to aerial images, while
unrecognizable and time-dependent are to have no
or less correlation to aerial images.

We gathered photo images associated to these
concepts from Flickr, and selected 200 positive sam-
ple images for each concepts. As negative sam-
ple images, we selected 200 images randomly from
100,000 images gathered from Flickr.

In the experiments, we carried out two-class im-
age classification and estimate weights to integrate
features of photos and four kinds of aerial images in
four different levels using MKL for the eighteen con-
cepts, and as a baseline we also made experiments
on image classification with only image features of
photos without fusion using a standard SVM.

We evaluated experimental results with five-fold
cross validation using the average precision (AP)
which is computed by the following formula:

AP =
1
N

N∑
i=1

Prec(i), (1)

where Prec(i) is the precision rate of the i posi-
tive images from the top, and N is the number of
positive test images for each fold.

Table 1. Average precision for eighteen
concepts by only photos and by fusion of
photos and aerial images.

(type) concept photo MKL gain
(l) Disneyland 68.00 84.06 +16.06
(r) park 67.43 76.04 +8.61
(r) shrine 72.79 78.53 +5.74
(t) festival 72.32 77.75 +5.43
(r) bridge 69.51 74.89 +5.38
(r) landscape 73.71 78.37 +4.66
(r) beach 80.10 83.85 +3.75
(t) red leaves 79.18 82.45 +3.27
(l) Tokyo tower 80.84 83.84 +3.00
(r) castle 81.28 83.53 +2.23
(u) sushi 80.11 81.93 +1.82
(r) railroad 74.70 76.20 +1.50
(u) flower 77.00 78.48 +1.48
(t) cherry blossom 80.94 81.61 +0.67
(u) ramen noodle 82.34 82.70 +0.36
(u) cat 73.98 74.26 +0.28
(u) vendor machine 83.17 83.43 +0.26
(t) sunset 83.01 83.11 +0.10

AVERAGE 76.69 80.28 +3.59

4.1 Experimental Results
We show the results by MKL-based fusion and

the baseline method in Table 1 and the estimated
weights for features of photos and features of four
kinds of aerial images in Table 2. In both the tables,
the alphabets just before concept names represent
the types of concepts. (l), (r), (u) and (t) means
location-specific concepts, recognizable concepts,



Table 2. Weights of features of images and four kinds of aerial images. The results are sorted
by the decending order of the weight of photos.

(type) concept photo level1 level2 level3 level4
(u) ramen noodle 0.873 0.002 0.000 0.037 0.088
(u) vendor machine 0.794 0.058 0.009 0.074 0.065
(t) cherry blossom 0.774 0.038 0.006 0.093 0.090
(u) cat 0.743 0.028 0.008 0.063 0.158
(t) sunset 0.729 0.055 0.058 0.016 0.142
(u) flower 0.658 0.000 0.042 0.051 0.249
(r) railroad 0.604 0.106 0.014 0.052 0.224
(r) landscape 0.604 0.078 0.024 0.093 0.199
(u) sushi 0.596 0.062 0.015 0.062 0.266

(type) concept photo level1 level2 level3 level4
(r) bridge 0.582 0.077 0.044 0.070 0.226
(t) red leaves 0.523 0.141 0.006 0.062 0.269
(r) castle 0.523 0.166 0.004 0.099 0.208
(t) festival 0.518 0.058 0.001 0.185 0.238
(r) shrine 0.507 0.033 0.009 0.061 0.391
(r) park 0.437 0.073 0.012 0.045 0.433
(r) beach 0.392 0.115 0.173 0.055 0.265
(l) Disneyland 0.384 0.095 0.236 0.131 0.153
(l) Tokyo tower 0.364 0.008 0.002 0.396 0.231

unrecognizable concepts, and time-dependent con-
cepts, respectively.

In Table 1, all the AP values of all the con-
cepts were improved by aerial image fusion. Rec-
ognizable concepts and location concepts tend to
achieve higher gains, while unrecognizable concepts
and time-dependent concepts tend to produce low
gains.

Especially, the gain on “Disneyland” was by far
the best among all the concepts, since “Disneyland”
photos are alway taken inside Disneyland parks,
and aerial photos corresponding to the geotag place
are always the same. The gain on another location-
specific concept “Tokyo tower” is not so much, since
photos on “Tokyo tower” were not take inside it,
but usually taken from many other places.

Regarding unrecognizable concepts such as
“sushi” and “flower”, small gains were obtained.
This is because the places where “sushi” and
“flower” photos are taken might have causal rela-
tionship to geographical features which appear di-
rectly in aerial photos. The places where “sushi”
and “flower” photos are taken are unevenly dis-
tributed, and are usually commercial areas where
there are many sushi restaurants for “sushi” or non-
commercial areas and farming areas for “flower”.
We expect that this indirect causal relation goes
for many unrecognizable concepts other than flow-
ers and sushi.

Regarding the estimated weights shown in Table
2, most of the concepts have the highest weights on
photo features and the second highest weights on
level 4 aerial images which is the finest one among
four levels of aerial images. For location-specific
concepts such as Disneyland, the area covered by
the finest level-4 image is too small to represent
specific features to the Disneyland.

The weights of photos for unrecognizable con-
cepts and time-dependent concepts tend to be
larger, while the weights of photos for recogniz-
able for concepts and location concepts tend to be
smaller.

From these results shown in Table 1 and Ta-
ble 2, using finer aerial photos for recognition is
more effective for recognizable concepts, and us-
ing medium-level aerial photos rather than the
finest ones are more helpful for location-specific

concepts. Moreover, even for unrecognizable and
time-dependent concepts, aerial photos is still a lit-
tle beneficial due to indirect causal relation.

5 Conclusion

In this paper, we proposed introducing Multi-
ple Kernel Learning (MKL) into geotagged image
recognition to estimate the contribution weights of
both visual features of photo images and aerial im-
ages. In the experiments, we made experiments
with eighteen concepts selected from four different
types of concepts. The experimental results showed
that using aerial images can be regarded as very
helpful for recognizable concepts such as “beach”
and “park” and still a little beneficial even for un-
recognizable concepts such as “cat” and “noodle”
likely due to indirect causal relation.

For future work, we plan to make more extensive
experiments with much more concepts and more
precise aerial photos, and to use other kinds of data
sources than aerial photos for geotags.
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