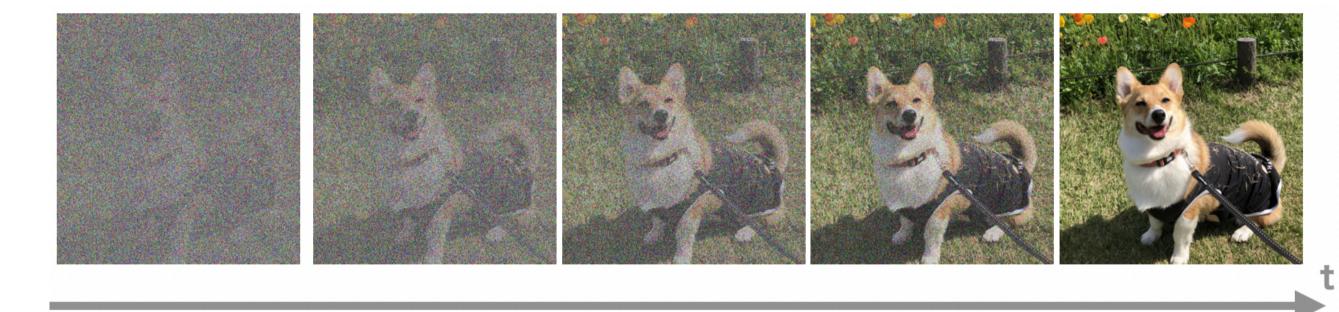
LAVA **Exploring Cross-Attention Maps** in Multi-modal Diffusion Transformers for Training-Free Semantic Segmentation Rento Yamaguchi, Keiji Yanai The University of Electro-Communications

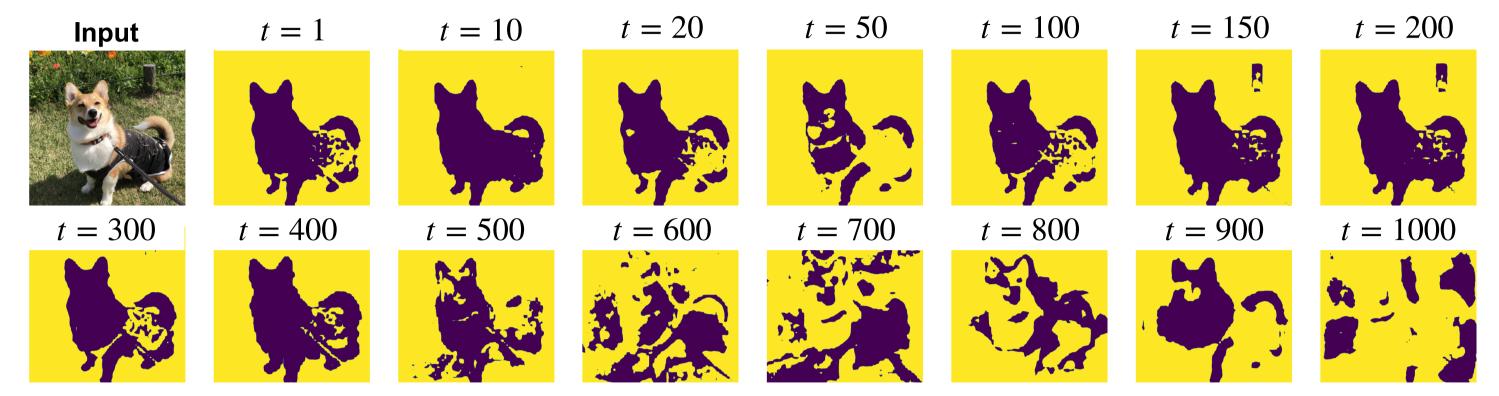
1. Background

#04

Diffusion models can generate high-quality images from noise, with Cross Attention Maps capturing object positions from prompt tokens.



The regions vary significantly when altering the timestep or MM-DiT layers from which the Cross Attention Map is extracted.



Generation Process of the Diffusion Model

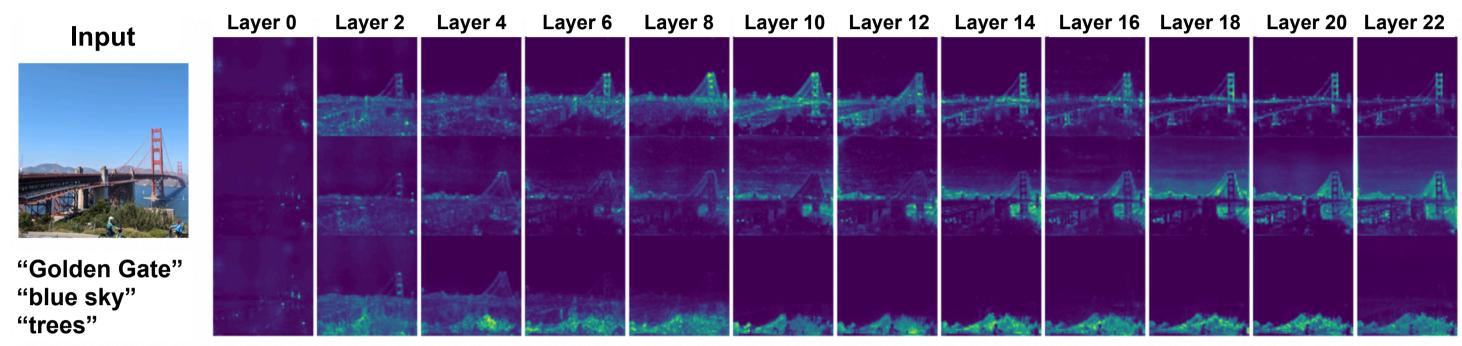
Token and Image Region Relationships in Cross Attention Maps

We investigated the object grouping capability in the cross attention maps of recent high-quality image generators based on **Diffusion Transformers**, such as Stable Diffusion 3.

2. Preliminary

The Multi-Modal Diffusion Transformer (MM-DiT)

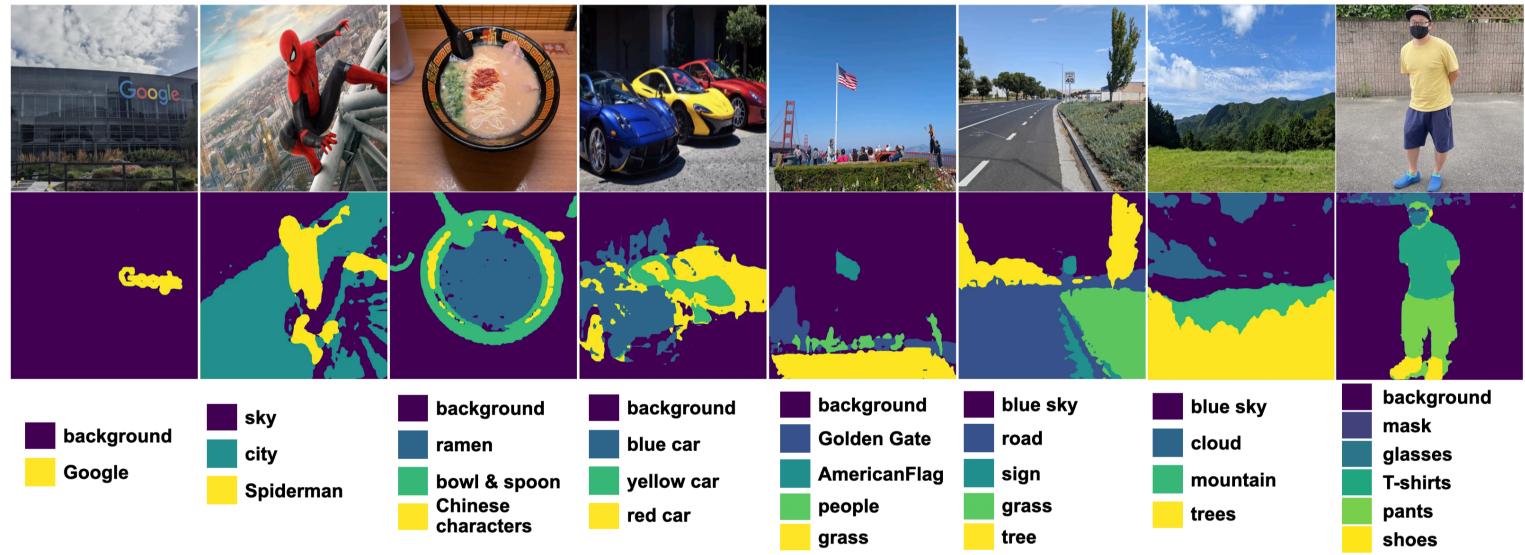
The differences of segmentation results by timesteps



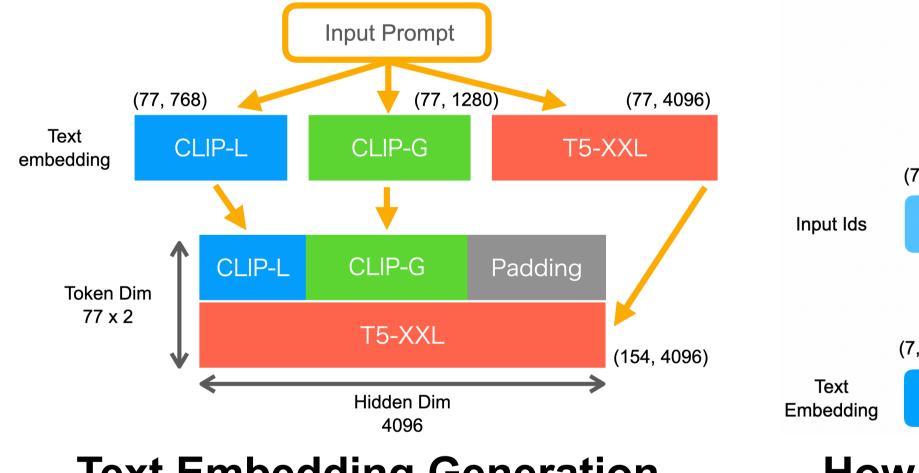
The differences of segmentation results by MM-DiT's layers

4. Experiments **Open-Vocabulary Segmentation**

Our method enables segmentation of arbitrary objects by utilizing the Stable Diffusion 3 model.



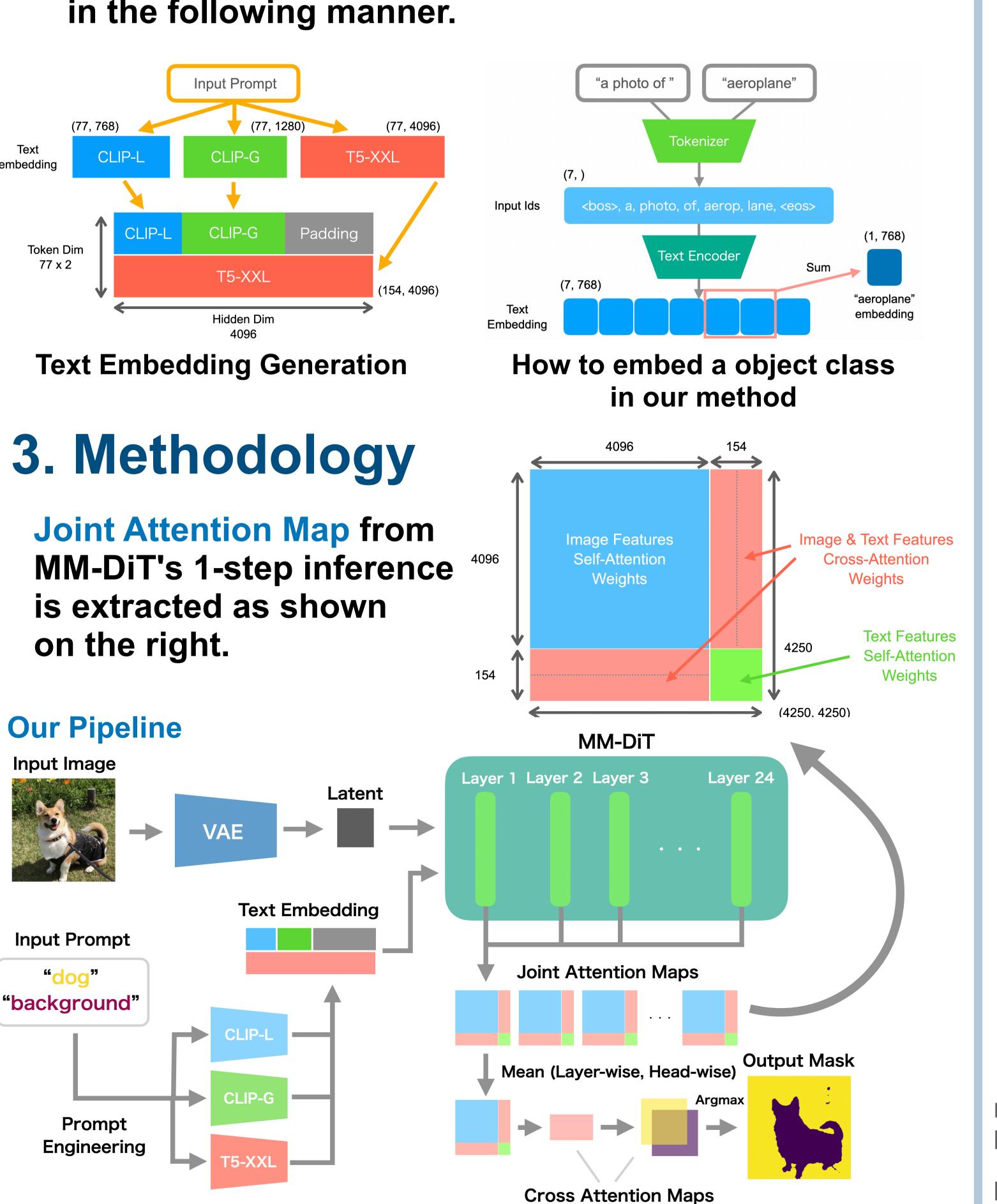
employed in Stable Diffusion 3 uses three text encoders to create text embeddings in the following manner.



JEC'

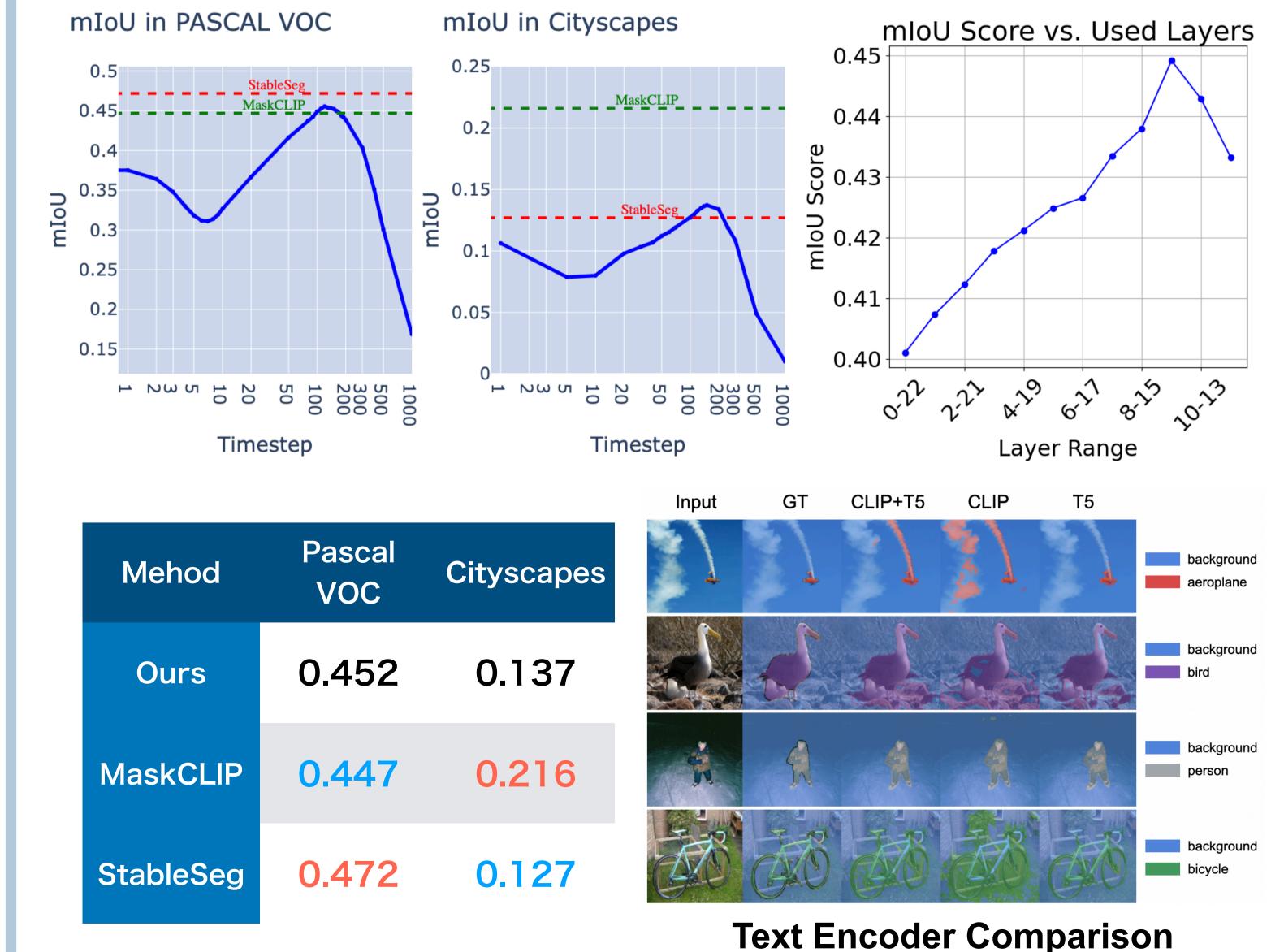
Joint Attention Map from MM-DiT's 1-step inference is extracted as shown on the right.

The University of Electro-Communications



Comparison on Hyperparameters

Evaluation on different timesteps and layers of MM-DiT and compared with existing training-free methods, MaskCLIP [1] and StableSeg [2].



References:

[1] Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from clip. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV. pp. 696–712. Springer Nature Switzerland, Cham (2022) [2] Honbu, Y., Yanai, K.: Training-free region prediction with stable diffusion. In: ACM MM (2024)