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- Dietary calorie management has been an important topic.

- There is a lot of research on calorie estimation in the multimedia community.

[Ege et al., IEICE2018]

[CalorieCaptorGlass, IEEE VR 2020]

[Im2Calories, ICCV 2015]

2D based Depth based Sensor based
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- Reconstruct 3D dish (food + plate) volume and 3D plate volume 

from a single dish image 

- Achieve consistency between the plate part of the two reconstructed 

volumes introducing plate consistency loss.



- Purpose: estimate the food volume. 

- Desired features. 

- The volume can be easily obtained.

- Matching plate part shape of dish and plate.

Appropriate 3D representation 

4

Self-intersection [Mesh R-CNN, ICCV2019]

The shapes of the dishes
do not match. 
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Self-intersection [Mesh R-CNN, ICCV2019]

Occupancy representation 
is reasonableThe shapes of the dishes

do not match. 
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Finally, apply the obtained occupancy 
field to the Marching Cube to extract 

the mesh. 
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- Learning the occupancy is actually a binary classification. (inside or outside)

- Binary cross entropy loss

𝑓𝑑 𝑥, 𝑝 ∈ 𝑅 : decoder that outputs occupancy

𝑥 : image feature vector

𝑝 ∈ 𝑅3 : input point coordinate

𝑜 𝑝 ∈ 𝑅 : occupancy of point p 
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- Plate consistency loss (proposal method)

- Loss function for matching plate parts of the 3D shape of dish and plat
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- Plate consistency loss (proposal method)

- Loss function for matching plate parts of the 3D shape of dish and plat

With Plate 
consistency loss

Without Plate 
consistency loss
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- Plate consistency loss (proposal method)

- Loss function for matching plate parts of the 3D shape of dish and plat

With Plate 
consistency loss

Without Plate 
consistency loss

There is a problem 
if the difference is 1.
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- Mini batch loss 

𝑓𝑒 𝐼𝑖 Encoder that outputs image feature

𝐼𝑖 i-th image

ℬ mini batch



Training dataset
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- There is no dataset containing a 3D mesh of dish.

- Build a new dataset 

- 240 Dish 3D models、38 plate 3D models.

- Using a commercially available 3D scanner.



Experiment : Qualitative evaluation
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With background



Experiment : Quantitative evaluation
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- weighting plate consistency loss
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- weighting plate consistency loss

plate consistency loss 
contributes to reducing 

volume error.



Conclusion
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- Hungry Networks

- Reconstruct 3D dish (food + plate) volume and 3D plate volume from a single dish image 

- Introducing plate consistency loss

- Matching plate parts of the 3D shape of dish and plate

- Contributes to the accuracy of volume estimation

- Creating a 3D food dataset

- We showed that it can correspond to the real dish image.


