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Introduction

- Dietary calorie management has been an important topic.

- There is a lot of research on calorie estimation in the multimedia community.
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Introduction

- Reconstruct 3D dish (food + plate) volume and 3D plate volume

from a single dish image

- Achieve consistency between the plate part of the two reconstructed

volumes introducing plate consistency loss.
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Appropriate 3D representation

- Purpose: estimate the food volume.

- DeSI rEd featu res. Self-intersection [Mesh R-CNN, ICCV2019]
- The volume can be easily obtained.

- Matching plate part shape of dish and plate.

The shapes of the dishes
do not match.
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Appropriate 3D representation

- Purpose: estimate the food volume.

- DeS| red featu res. Self-intersection [Mesh R-CNN, ICCV2019]

- The volume can be easily obtained. No Self-intersection
&

- Matchi lat t sh f dish and plate. :
atching plate part shape of dish and plate Watertight Mesh

Occupancy representation
is reasonable

The shapes of the dishes
do not match.




Hungry Networks : inference
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Hungry Networks : inference
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. Increase the resolution
Hungry Networks : inference only at the boundary

surface of the object.
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Hungry Networks : inference
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Hungry Networks : training

Learning the occupancy is actually a binary classification. (inside or outside)

- Binary cross entropy loss

ﬁ@(fd(lf,p), O(}O)) — ﬁbce(fd(x:p)z O(p))

p € R3 : input point coordinate

X : image feature vector
o(p) ER : occupancy of point p
f4(x,p) € R :decoder that outputs occupancy




Hungry Networks : training

- Plate consistency loss (proposal method)

- Loss function for matching plate parts of the 3D shape of dish and plat

fa(x,p) f a2(x, D) — fa1(x, )
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1 1 0
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Le(far(p), faz(p)) = max(faa(p) — far(p) . 0)
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Hungry Networks : training

- Plate consistency loss (proposal method) 1

- Loss function for matching plate parts of the 3D shape of dish at

fa(x,p) f a2(x, D) — fa1(x, )
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Hungry Networks : training

- Mini batch loss

f.(I,) Encoder that outputs image feature
ri = fe(li)

yli; = fai(zi.pij)

I i-th image
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‘B mini batch
y2i; = fa2(xi.pij)
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Training dataset

- There is no dataset containing a 3D mesh of dish.

- Build a new dataset

- 240 Dish 3D models. 38 plate 3D models.

- Using a commercially available 3D scanner.




Experiment : Qualitative evaluation
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Experiment : Quantitative evaluation

- weighting plate consistency loss

) Chamfer Chamfer plate
A3 IoU (dish) IoU (plate) Volume error
L1 (dish) L1 (plate) consistency

0 0.624 0.621 0.0189 0.0186 0.0256 0.0252
20 0.550 0.607 0.0262 0.0182 0.0168 0.0155
50 0.542 0.610 0.0260 0.0209 0.0152 0.0161
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Experiment : Quantitative evaluation

plate consistency loss
contributes to reducing

- weighting plate consistency loss
9 9p Y volume error.

) Chamfer Chamfer plate
A3 IoU (dish) IoU (plate) Volume error
L1 (dish) L1 (plate) consistency
0 0.624 0.621 0.0189 0.0186 0.0256
20 0.550 0.607 0.0262 0.0182 0.0168
50 0.542 0.610 0.0260 0.0209 0.0152
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Conclusion

- Hungry Networks

- Reconstruct 3D dish (food + plate) volume and 3D plate volume from a single dish image

- Introducing plate consistency loss
- Matching plate parts of the 3D shape of dish and plate

- Contributes to the accuracy of volume estimation

- Creating a 3D food dataset

-  We showed that it can correspond to the real dish image.




