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Objective

Weakly supervised segmentation
- Use only image-level annotation and generate segmentation masks
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Evaluation of input masks for mtegratlons

Calculation of confidence scores
- Bias b is for making gap between decisions

Modeling the decision process about whether to use the adviser's opinion

Decision by own principles
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-In both of decisions, high value (highlighted by white) indicates low confidence
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- Our motivation is to use CRF results as not teacher but adviser
- In our situation, we suppose advisers give us noisy information Loss for difference detection in PSA and CRF
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Overview of Difference Detection Network(DD-Net)

-Training

Train a difference detection model using difference regions between raw
segmentation masks generated by PSA[1] and its CRF results

-Inference

Integrate a pair of mask using DD-net outputs
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Definition of difference detection task
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Definition of difference detection network (DD-net)
- Input: One of the pair of mask (mbef"’"e or m¥t") and

feature maps (e (x ), et (x)) romemicsr

- Qutput: Probability map
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Losses for segmentation network
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Experiments

Comparison with WSS methods w/o additional supervision.

- Dataset: Pascal VOC 2012 dataset
- Evaluation metric: mean loU

Viethod Raw sced (Tvgzné;l
PSA (re-implementation) 52.5 58.4
PSA+CRF(re-implementation) 48.0 59.0
Static region refinement 53.4 61.4

Comparison with WSS methods w/o additional supervision.

Methods Val set | Test set
FCN-MIL(ICLR2015) 25.7 24.9
CCNN(ICCV2015) 35.3 35.6
EM-Adapt(ICCV2015) 38.2 39.6
DCSM(ECCV2016) 44.1 45.1
BFBP(ECCV2016) 46.6 48.0
SEC (ECCV2016) 50.7 51.7
TPL(ICCV2016) 53.1 53.8
CBTS(CVPR2017) 52.8 53.7
PSA(CVPR2018) 61.7 63.7
Static region refinement 61.4 -
Dynamic region refinement 64.9 65.5
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Results on PASCAL VOC 2012 val set.

PSA[1] | 88.2 | 68.2 | 30.6 | 81.1 | 496 | 61.0 | 77.8 | 66.1 | 75.1 | 29.0 | 66.0
SSDD | 89.0 | 625 | 289 | 83.7 | 529 | 595 | 77.6 | 73.7 | 87.0 | 34.0 | 83.7
Gain +0.8 | -5.7 | -1.7 | +2.6 | +3.3 1.5 -0.2 | +7.6 |+11.9| +5.0 | +17.7
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PSA[1] | 40.2 | 80.4 | 62.0 | 70.4 | 73.7 | 425 | 70.7 | 42.6 | 68.1 | 51.6 | 61.7
SSDD | 476 | 84.1 | 77.0 | 739 | 69.6 | 298 | 84.0 | 43.2 | 68.0 | 53.4 | 64.9
Gain +/7.4 | +3.7 | +15.0| +3.5 | 4.1 | -12.7 | +13.3 | +0.6 | -0.1 +1.8 | +3.2

Comparison with WSS methods w/additional supervision.

Methods Additional information Val set Test set
MIL-seg(CVPR2015) Saliency mask + Imagenet images 42.0 40.6
STC (PAMI2017) Saliency mask + Web images 49.8 51.2
AE-PSL(CVPR2017) Saliency mask 55.0 55.7
Hong et al. CVPR2017 Web videos 58.1 58.7
DSRG (CVPR2018) Saliency mask 61.4 63.2
Shen et al. (CVPR2018) Web images 63.0 63.9
SeeNet(NIPS2018) Saliency mask 63.1 62.8
AISI(ECCV2018) Instance saliency mask 63.6 64.5
SSDD(proposed) 64.9 65.5
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For each row, from the left, (a) input images, (b) Raw PSA segmentation masks,
(c) Difference detection maps of (b), (d) CRF masks of (b), (e) Difference
detection maps of (d), (f) Refined segmentation masks by the proposed method
and (g) Ground truth masks. Two bottom rows show failure cases.
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