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Introduction

 Many people to post photos on open SNSs such
as Twitter and Instagram
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Introduction
* Flickr
— Textual information attached to photos for photo
sharing

* Twitter, Instagram

— Do not tend to represent the contents of photos
directly

— Not for search but for explaining additional
information
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Introduction

* Analyze the differences on idea of the privacy
issue at SNSs depends on culture and history
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Related Works

* Typical works on Twitter photo,
— Event detection
— Using both text analysis and image analysis

e Qur work

— We analyze a million-scale of Twitter photos
without using any textual information

— We aim to detect the differences of regional
tendency of posted photos to Twitter
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Overview of the Proposed Method

(1) Gather a million-scale of geotagged photos
from the Twitter stream

(2) Extract image features
(3) Carry out clustering of them
(4) Classify only large clusters

(5) Compare the ratios of five categories
between eight regions over the world

(© 2017 UEC Tokyo.



Detail of the Method

* We are continuously gathering geotagged
photo tweets from the Twitter stream

 Two million geotagged Twitter photos which
we had gathered for half years in 2016.
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Image Classification

* AlexNet (CaffeNet)
— Extract CNN features of 1000 images per one minutes

* FC6 layer of CaffeNet is 4096

* Principal Component Analysis (PCA)
— 4096-d features into 128-d features
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Conv Conv Conv Conv
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Clustering

* K-means clustering.
— k=100

* A small pre-liminary experiments with 1000
Twitter photos

— To examine the difference on clustering results
between the cases with and without PCA-based
feature compression
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Clusteling results (4096-d)
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Clusteling results (128-d)
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5 Experiments

* Dataset
— Collected from January to June in 2016
— 2,161,000 geotagged Twitter images

* Feature
— CNN(128-d compressed by PCA)

e K-means

— K-means with one-tenth images
* Assigned rest of images into the nearest clusters

— K=100
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5.3 How to Analyze

e East Asia, North America, South America,
Europe, Africa, Middle East, South Asia and
South-East Asia, Oceania
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5.3 How to Analyze

* pre-selected photo genres.
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* East Asia
— No people photos
~—  — Many building and food photos T

— The total ratio of building and food photos were
more than 70%
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* North America

~ —The ratio of people and building were high more
than 60%.
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e South America

——  —People photos are the most popular genre (67%)
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Analysis of Regional Tendency «
Photo Genres

* Europe

— The number of posted photos was the most large
I\

— The genres were well balanced. .14%

19%

e Africa
— Almost no building, scene and food photos were
2Uh
posted
27%

— People photos occupied 70%. o
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e Middle East

— Although the number of posts were fewer than
o Europe, all the five genres were balanced as well
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Analysis of Regional Tendency o
Photo Genres

 South Asia

— More than half of the photos were document photos.

2% 1%
observed in other regions

e SouthEast Asia 4

— People photos are the most and in addition food
photos was the second most

— This tendency was not
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Sourth America: People
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Africa: People
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East Asia: Food
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Discussion

* Tendency

— East Asia and East-South Asia,
* Food photos are relatively high

— South America, South Asia and East-South Asia

* people photos are exceptionally high.

— Europe and MiddleEast

 well balanced.

e East Asia enjoy posting food photos

e South America, South Asia and EastSouth Asia like
to post people photos without caring privacy issue.
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Conclusions

* Analyzed the differences of the tendency of the
photo genres of posted photos.

— Gathered geotagged Twitter photos
— Extracted CNN features
— Carried out clustering

* Future works

— making typical genres more fine-grained
* “people photo” -> “selfy” and“group photo”
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