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ABSTRACT
In this paper, we propose a partial texture style trans-
fer method by combining a neural style transfer method
with segmentation. A style transfer technique based on
Convolutional Neural Network (CNN) can change ap-
pearance of an image naturally while keeping its struc-
ture. We extend this algorithm for changing appearance
partly in a given image. For example, changing a ball
made of “leather” in the image to one made of “metal”.
The original algorithm changes the style of an entire im-
age including the style of background even though we
want to change only object regions. Therefore, we need
information of target object position, in order to transfer
texture styles to only object region in an image. We seg-
ment target object regions using a weakly supervised seg-
mentation method and transfer a given texture style to
only the segmented regions. As results, we achieved par-
tial style transfer for only specific object regions, which
enables us to change materials of objects in a given image
as we like.

Index Terms— style transfer, weakly supervised
segmentation

1. INTRODUCTION

In 2015, Gatys et al. proposed an algorithm on neural
artistic style transfer [1, 2] which synthesizes an image
which has the style of a given style image and the con-
tents of a given content image using Convolutional Neu-
ral Network (CNN). This method enables us to modify
the style of an image keeping the content of the im-
age easily. It replaces the information which are de-
graded while the signal of the content image goes for-
ward through the CNN layers with style information ex-
tracted from the style image, and reconstructs a new
image which has the same content as a given content im-
ages and the same style as a given style image as shown
in Figure 1. In this method, they introduced “style ma-
trix” which was presented by Gram matrix of the feature
maps, that is, correlation matrix between feature maps
in CNN.

Fig. 1. An example result of the neural style transfer.

In this work, we apply this neural style transfer al-
gorithm to changing of the material of objects in an im-
age. As a material image dataset, we use Flickr Material
Database (FMD) [3] which is widely used for material im-
age analysis, and we realize material change of images.
The method proposed by Gatys et al. [1, 2] the style of
an entire image including the style of background even
though we want to change only object regions. There-
fore, we need information of target object position, in
order to transfer texture styles to only object regions in a
given image. We segment the regions of the target mate-
rials using a weakly supervised segmentation method and
transfer the style of the given materials to only the target
regions. As results, we achieved partial style transfer for
only specific material regions, which enables us to change
materials of objects in a given image as we like. In the
experiments, we apply material semantic segmentation
to the synthesized images the style of the target mate-
rials of which was replaced with the style of the other
material to confirm if material changes were correctly
done. If material change becomes possible, various kinds
of applications can be possible such as interior design
and clothing design.

2. PROPOSED METHOD

2.1. Overview

In the proposed method, we combine neural style transfer
with semantic segmentation.
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Fig. 2. Processing flow.

Figure 2 shows the processing flow of the proposed
method.

1. Change the style of the material images by Gatys
et al.’s neural style transfer method [1].

2. Estimate the regions corresponding to the given
material by a semantic segmentation method.

3. Synthesize the image in which the material is
changed by integrating the material regions of the
transferred images and the background regions of
the original images into the final output images.

4. Confirm if the material is changed correctly by ap-
plying semantic material segmentation.

2.2. Neural Style Transfer

First, we transform the style of an image using the neural
style transfer method proposed by Gatys et al. [1, 2]. We
represent an input image to be transformed as xc, a given
style image the style of which is transferred as xs, and
an output image which is a synthesized image with the
content of xc and the style of xs as xg. In the algorithm,
we repeatedly modify xg so that the content features of
xg extracted from CNN becomes close to the content
features of xc and the style features of xg becomes close
to the style features of xs. After several tens of iteration,
we obtain a synthesized image.

Following [1], we use VGG19 [4] pre-trained with the
1000-class ILSVRC dataset as a base CNN for feature ex-
traction, and we extract content features from conv4_2
and style features from five layers (conv1_1, conv2_1,
conv3_1, conv4_1, and conv5_1).

We use activations (a 3D tensor) F (x, l) of layer l as
content representation of layer l. The loss function re-
garding content features which is the difference between
F (xc, l) and F (xg, l) is represented by the following equa-
tion:

Lc(xc, xg) = 1
2

∑
i,j

(Fi,j(xc, l) − Fi,j(xg, l))2 (1)

Fig. 3. The algorithm of neural style transfer.

On the other hand, according to [1], we use Gram
matrix G(x, l) of activations of layer l as a style rep-
resentation. It is the original finding by Gatys et al.
that Gram matrix of CNN activations represents a style
of an image efficiently. The loss function regarding con-
tent features which is the difference between G(xs, l) and
G(xg, l) is represented by the following equation:

G(x, l) = F (x, l)F T (x, l) (2)

Losss,l(xs, xg, l) = 1
4Nl

2

∑
i,j

(Gi,j(xs, l) − Gi,j(xg, l))2 (3)

Losss(xs, xg) =
∑

l

wlLosss,l (4)

The loss function is represented by the following
equation:

Loss(xc, xs, xg) = wcLossc + wsLosss (5)
where wc and ws are weighting constants. We estimate
xg so as to minimize this loss function with the L-BFGS
method. The estimated xg was the image with the con-
tent of xc and the style of xs.

2.3. Weakly Supervised Segmentation

In this paper, as a method on semantic segmentation,
we use CNN-based weakly-supervised semantic segmen-
tation proposed by Shimoda et al. [5]. With a weakly-
supervised semantic segmentation method, we can train
a segmentation model from training images having only
class labels without pixel-level annotation. In this
method, they improved class-specific saliency maps pro-
posed by Simonyan et al. [6] which is a back-propagation-
based object region estimation method, and proposed a
method to obtain “Distinct Class-specific Saliency Maps
(DCSM)”. DCSM can be used as unary potentials of
dense CRF [7]. Figure 4 shows the procedure of the
DCSM-based weakly-supervised semantic segmentation.

2.3.1. Training CNN

For preparation of CNN-based semantic segmentation,
we need to train a CNN with a multi-label loss func-
tion. As an off-the-shelf basic CNN architecture, we use



Fig. 4. The procedure of CNN-based weakly-supervised
semantic segmentation.

the VGG-16 [6] pre-trained with the 1000-class ILSVRC
dataset. In this framework, a CNN is fine-tuned with
training images with only image-level multi-label anno-
tation.

Recently, fully convolutional networks (FCN) which
accept arbitrary-sized inputs are used commonly in
works on CNN-based detection and segmentation such as
[8] and [9], in which fully connected layers with n units
were replaced with the equivalent convolutional layers
having n 1×1 filters. Following them, we introduce FCN
to enable multi-scale generation of class saliency maps.

2.3.2. Saliency Maps

Recently, a convolutional neural network (CNN) trained
with only image-level annotation has been known to have
the ability to localize trained objects in an image. Si-
monyan et al. [10] proposed class saliency maps based on
the gradient of the class score with respect to the input
image, which showed weakly-supervised object localiza-
tion could be done by back-propagation-based visualiza-
tion. However, their class saliency maps are vague and
not distinct as shown in Figure 5. When different multi-
ple kinds of target objects are included in the image, the
maps tend to respond to all the object regions.

To resolve the weaknesses of their method, Shimoda
et al. [5] propose a new method to generate CNN-
derivatives-based saliency maps. The proposed method
can generate more distinct class saliency maps which dis-
criminate the regions of a target class from the regions
of the other classes. The generated maps are so distinct
that they can be used as unary potentials of CRF di-
rectly.

To make class saliency maps clearer, they propose
three improvements [5]: (1) using CNN derivatives with
respect to feature maps of the intermediate convolu-
tional layers with up-sampling instead of an input image;
(2) subtracting saliency maps of the other classes from
saliency maps of the target class to differentiate target

bicycle bicycle

person train person train

chair sofa chair sofa
Simonyan et al. DCSM

Fig. 5. Obtained class saliency maps (Left) by Simonyan
et al. [10] (Right) by the DCSM [5].

objects from other objects; (3) aggregating multiple-scale
class saliency maps to compensate lower resolution of the
feature maps.

2.3.3. Dense CRF

Conditional Random Field (CRF) is a probabilistic
graphical model which considers both node priors and
consistency between nodes. By using CRF, we can ob-
tain smoother regions from roughly estimated region
potentials. Because object class-specific saliency maps
(OCSM) represent only probability of the target classes
on each pixel and have no explicit information on object
region boundaries, we apply CRF to obtain more dis-
tinct object boundaries. In the framework, we use Dense
CRF [7] where every pixel is regarded as a node, and
every node is connected to every other node. The energy
function is defined as follows:

E(c) =
∑

i

θi(ci) +
∑
i,j

θi,j(ci, cj) (6)

where ci represents a class assignment on pixel i. The
first unary term of the above equation is calculated from
class saliency maps M̂ c

i . We defined it as θi(ci) =
− log(M̂ c

x,y) .
In our work, we introduce background label extension

in addition to the method by Shimoda et al. [5]. Using
class saliency maps of the target classes, we estimate the
background potential as follows:

Mbg = 1 − max
c∈target

M c
x,y (7)

Note that the classes the likelihood estimated by the
multi-class CNN of which exceed the pre-defined thresh-
olds are selected as target classes.

3. EXPERIMENTS

In the experiments, we use images in the Flickr Material
Database (FMD) [3] which contains ten kinds of mate-
rial classes (fabric, foliage, glass, leather, metal, paper,



water result water(red)

plastic result foliage(green) plastic(gray)

fabric result fabric(red brown) paper(skyblue) stone(brown)

wood result leather(blue) water(red) wood(lightgreen)

Fig. 6. Examples of segmentation results and class-
specific saliency maps of material images.

plastic, stone, water, and wood) and 100 images for each
class. Figure 6 shows the obtained saliency maps of some
FMD matarial images by DCSM [5]. In the experiments,
we picked up 20 images from each class and totally 200
images as style images, and we used two images (leather
jacket and leather ball) shown in Figure 7 as base content
images.

As shown in Figure 2, we carried out style transfer
of whole images, semantic segmentation on ten material
classes, replacing materials, and re-segmentation of the
images in which materials were changed. We applied 200
style images to two kinds of content images. That is,
we repeated that procedures 400 times. Figure 7 shows
20 results out of 400 kinds of combinations. Note that
the colors of the color bars in the left of the material
names correspond to the colors of the pixels in the re-
segmentation result images. This shows that changing
materials into fabric, foliage and stone were successful,
while changing to glass, leather, metal, plastic, paper,
water and woods were only partly successful.

We evaluated accuracy of re-segmentation of style-
changed images over 400 combinations with the pixel-
wise accuracy (Pixel Acc.) and the mean of intersection
over union (Mean IU). Pixel Acc, accpixel_acc, represents
the ratio of correctly labeled pixels among all the pixel
in a given image, while Mean IU, accmean_IU , repre-
sents the ratio of the intersection of estimated pixels and
ground-truth pixels over their union which penalized if
the detected regions are either too large or too small.
That it, Mean IU is more strict measurement than Pixel
ACC.

accpixel_acc = tn

N
(8)

where tn is the number of correctly labeled pixels and N
is the number of all the pixels.

accmean_IU = #(Se ∩ Sgt)
#(Se ∪ Sgt)

(9)

where (S) represents the number of pixels of region S,
and Se and Sgt represents the estimated region and the

ground-truth region, respectively.
Table 1 shows Pixel Acc and IU on the material-

changed results shown in Figure 7. Both measurements
on fabric, foliage and stone show relatively large values.
Note that in this experiments, we applied one style im-
age per material category, while we applied twenty style
images per material category in the next experiments.

Table 1. The evaluation scores (Pixel-wise accuracy and
mean IU) of the segmentation results after transforma-
tion shown in Figure 7.

class
pixel
acc.

mean
IU

pixel
acc.

mean
IU

fabric 0.6446 0.6132 0.8091 0.8147
foliage 0.7556 0.7309 0.8668 0.7101
glass 0.4409 0.5520 0.4301 0.5999

leather 0.5858 0.5756 0.5706 0.6897
metal 0.3086 0.4563 0.3456 0.5616
paper 0.4491 0.4983 0.3196 0.5343
plastic 0.3227 0.4212 0.1931 0.3012
stone 0.7186 0.7293 0.9431 0.9054
water 0.4683 0.5073 0.4719 0.6454
wood 0.3550 0.4567 0.2701 0.5227

Figure 8 and Figure 9 shows the average statistics of
Pixel Acc and mean IU on each changed material with
20 style images per material class. These graphs show
the same tendency as Table 1.

4. DISCUSSION

From the results shown in Figure 7, we have confirmed
that in many cases the proposed method enabled partial
style transfer and changing materials of objects keeping
the shapes of objects. The results over 400 combinations
shown in Figure 8 and Figure 9 indicated that some ma-
terials were easy to transfer and some were not easy.
Especially, we found that fabric, foliage and stone were
easy materials to transfer, while metal, glass and plas-
tic were hard materials to transfer for the current style
transfer method.

The transferred results on foliage, fabric and stone
seems natural and easy to recognize into which material
an input image transferred even for human. The style
images of these styles have irregular and small-scale tex-
tures which are easy to transform, and it makes style
transfer easy.

In addition, it was turned out that we obtained more
natural results when the content of the style image is
close to the content of the content image. Figure 10
shows the example of this case.



Fig. 8. The accuracy of re-segmentation results regard-
ing Pixel Acc.

Fig. 9. The accuracy of re-segmentation results regard-
ing mean IU.

5. CONCLUSIONS

In this paper, we examined if neural style transfer tech-
nique could change the material of objects. To do that,
we proposed a combination of neural style transfer and
semantic material image segmentation. In the experi-
ments, we examined 400 combinations with two content
images and 20 style images for each material class. As re-
sults, in many cases, changing materials of objects were
successfully done, and we observed the tendency that
some materials were easy to transfer and some were not
easy. Especially, we found that fabric, foliage and stone
were easy materials to transfer, while metal, glass and
plastic were hard materials to transfer for the current
style transfer method. In addition, it was turned out
that we obtained more natural results when the content
of the style image is close to the content of the content
image.

For future work, considering the finding of this work,
we will propose a method to select better style images or
better part of style images automatically, and improve
the neural style transfer method so that it can transfer
the glossy materials such as metal, glass and plastics.

In this work, we carried out style transfer and seg-
mentation independently, and synthesize partial trans-

Fig. 10. Advantage of Common contents between con-
tent images and style images.

ferred images using both results. These two indepen-
dent CNN-based processing sometimes made unnatural
boundaries in the transferred images. For future work,
we plan to make an end-to-end network which realizes
partial style transfer including both processing of seg-
mentation and style transfer.
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Fig. 7. The results of material-changed images and their results of semantic material segmentation.


