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Introduction

• Twitter and Weibo 

– timelines and on-the-spot-ness

– include much information on various events 

• Geotagged photo tweets

– Has locations where photo were taken

– Geotagged photo tweets is very limited
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Introduction

• Objective

– localizing a Twitter photo using both textual 
features and visual features

• localization from texts

– GeoNLP 1 

• localization from visual features

– image search for a geotagged photo database

– SIFT or DCNN features 
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Related Work

• Watanabe et al. 

– Estimate locations of tweets from texts

• Hays et al (IM2GPS)

– image retrieval for a large-scale geotagged image 
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Proposed Method
A. Overview

1) Location estimation by visual features

2) Location estimation by Twitter messages texts. 

3) Integration of the locations estimated by the 
two kinds of features
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B. Grid-based location estimation

• grid-based location rather than a pair of 
longitude and latitude

• We evaluate possible grids by giving scores, 
and select the grid with the best score as the 
final estimated location.
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C. Twitter photo localization 
by visual features

• Photo locations with image retrieval for a 
large-scale geotagged image database

– several millions of geotagged photo tweets

• Features

– SIFT feature

– DCNN feature (Overfeat)

• 4096d -> 64d by PCA
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C. Twitter photo localization 
by visual features

• Image retrieval for a database

– Top M similar images for a given image

– The visual-feature-based score

• represents the location grid index of j-th retrieved 
images

•
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D. Text-based location estimation

• GeoNLP 

– Extracts place names such as Tokyo and New York

– Estimate location based on the dictionary

• The textual-feature-based score of i-th grid

• represents the location grid index of j-th retrieved 
images

•
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E. Integration of estimated location

• Textual score

• Visual score

• Integrated score
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F. Automatic weight estimation

• reliable score

– represents how extent the estimated locations to 
image I concentrate to one grid

– K represents the number of the estimations in the grid 
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Experiments

• Dataset

– Training data

• 2014/01~2015/01

• About 240,000

– Test data

• 2011/02~2014/12

• Around 4,000

– Similar image number:M=50

– Grid size：0.1° (about 10km)
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Experiments
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Experimental results
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Examples
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Examples

• Visual features only
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Conclusion and future work

• We proposed a method to localize Twitter 
photos

• Integration of both features improved 
localization accuracy compared to using only 
single modality

• Future work 

– Integrate our data source related to geotagged 
photos such as Flickr and Panoramio


