

Twitter Photo Geo-Localization Using Both Textual and Visual Features

Shin Matsuo, Keiji Yanai

Introduction

- Twitter and Weibo
 - timelines and on-the-spot-ness
 - include much information on various events
- Geotagged photo tweets
 - Has locations where photo were taken
 - Geotagged photo tweets is very limited

Introduction

- Objective
 - localizing a Twitter photo using both textual features and visual features
- localization from texts
 - GeoNLP 1
- localization from visual features
 - image search for a geotagged photo database
 - SIFT or DCNN features

Related Work

- Watanabe et al.
 - Estimate locations of tweets from texts
- Hays et al (IM2GPS)
 - image retrieval for a large-scale geotagged image

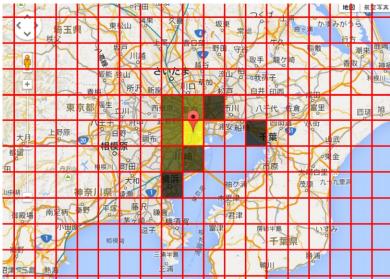
Proposed Method A. Overview

- 1) Location estimation by visual features
- 2) Location estimation by Twitter messages texts.
- 3) Integration of the locations estimated by the two kinds of features

B. Grid-based location estimation

- grid-based location rather than a pair of longitude and latitude
- We evaluate possible grids by giving scores,
 and select the grid with the best score as the

final estimated location.



C. Twitter photo localization by visual features

- Photo locations with image retrieval for a large-scale geotagged image database
 - several millions of geotagged photo tweets
- Features
 - SIFT feature
 - DCNN feature (Overfeat)
 - 4096d -> 64d by PCA

C. Twitter photo localization by visual features

- Image retrieval for a database
 - Top M similar images for a given image
 - The visual-feature-based score

$$S_v(L_i|I) = \sum_{i=1}^{M} \frac{1}{\sqrt{j}} \phi(E_j - i)$$
 $P_v(L_i|I) = \frac{S_v(L_i|I)}{\sum_i S_v(L_i|I)}$

- E_j represents the location grid index of j-th retrieved images
- $\phi(x) = 1(x = 0), 0(x \neq 0)$

D. Text-based location estimation

GeoNLP

- Extracts place names such as Tokyo and New York
- Estimate location based on the dictionary
- The textual-feature-based score of i-th grid

$$S_t(L_i|I) = \sum_{i=1}^{N} \phi(E_j - i)$$
 $P_t(L_i|I) = \frac{S_t(L_i|I)}{\sum_i S_t(L_i|I)}$

- E_j represents the location grid index of j-th retrieved images
- $\phi(x) = 1(x = 0), 0(x \neq 0)$

E. Integration of estimated location

- Textual score $P_v(L_i|I)$
- Visual score $P_t(L_i|I)$

Integrated score

$$P(L_i|I) = \frac{w_v P_v(L_i|I) + w_t P_t(L_i|I)}{\sum_{k=1}^{n} w_v P_v(L_k|I) + w_t P_t(L_k|I)}$$

F. Automatic weight estimation

- reliable score B(I)
 - represents how extent the estimated locations to image I concentrate to one grid

$$B(I) = \frac{e^{\frac{K}{N}} - 1}{e - 1}$$

$$w_v = B(I), w_t = 1 - B(I),$$

K represents the number of the estimations in the grid

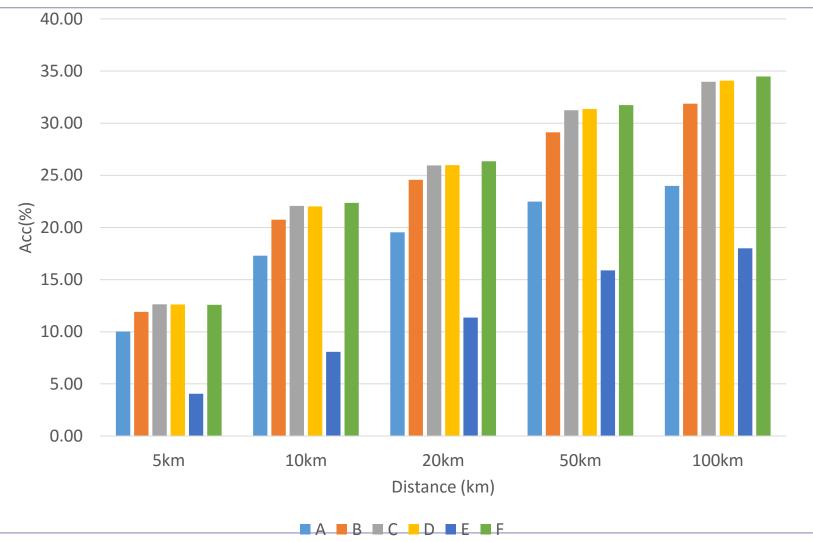
Experiments

- Dataset
 - Training data
 - 2014/01~2015/01
 - About 240,000
 - Test data
 - 2011/02~2014/12
 - Around 4,000
 - Similar image number:M=50
 - Grid size: 0.1° (about 10km)

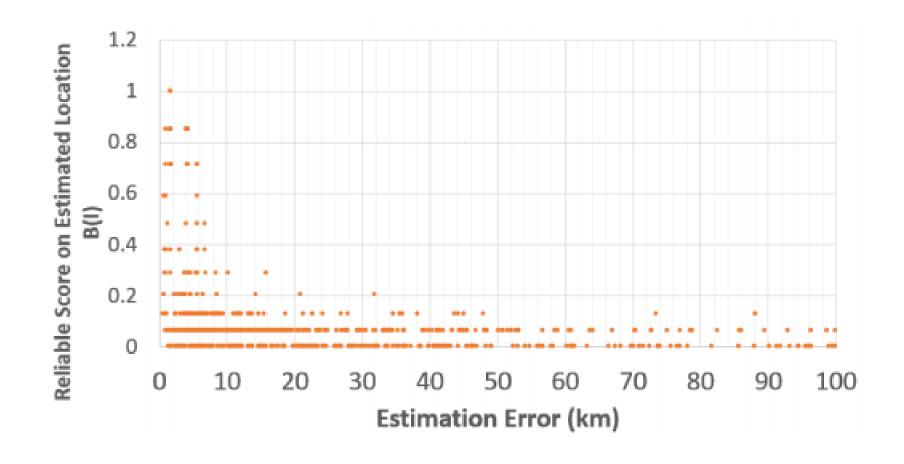
TABLE II LOCALIZATION ACCURACY (%) WITH M = 50.

	feature	w_t	w_v	5km	10km	50km	100km
Α		1.00	0.00	36.0	57.2	65.9	68.3
				(1440)	(2288)	(2636)	(2732)
В		0.75	0.25	35.8	57.5	67.3	69.7
				(1432)	(2300)	(2692)	(2788)
C	BoF	0.50	0.50	35.3	56.8	66.6	68.8
				(1412)	(2272)	(2664)	(2752)
D		0.25	0.75	31.8	50.6	58.6	60.5
				(1272)	(2024)	(2344)	(2420)
E		0.00	1.00	2.6	6.0	13.7	16.0
				(104)	(240)	(548)	(640)
A		1.00	0.00	36.0	57.2	65.9	68.3
				(1440)	(2288)	(2636)	(2732)
В		0.75	0.25	36.7	58.7	67.2	69.9
				(1468)	(2348)	(2688)	(2796)
C		0.50	0.50	36.6	58.3	66.6	69.4
	DCNN			(1464)	(2332)	(2664)	(2776)
D		0.25	0.75	35.0	55.2	62.8	65.4
				(1400)	(2208)	(2512)	(2616)
E		0.00	1.00	4.1	8.1	15.9	18.0
				(164)	(324)	(636)	(720)
F		AUTO	AUTO	36.3	59.1	68.9	71.4
				(1452)	(2364)	(2756)	(2856)

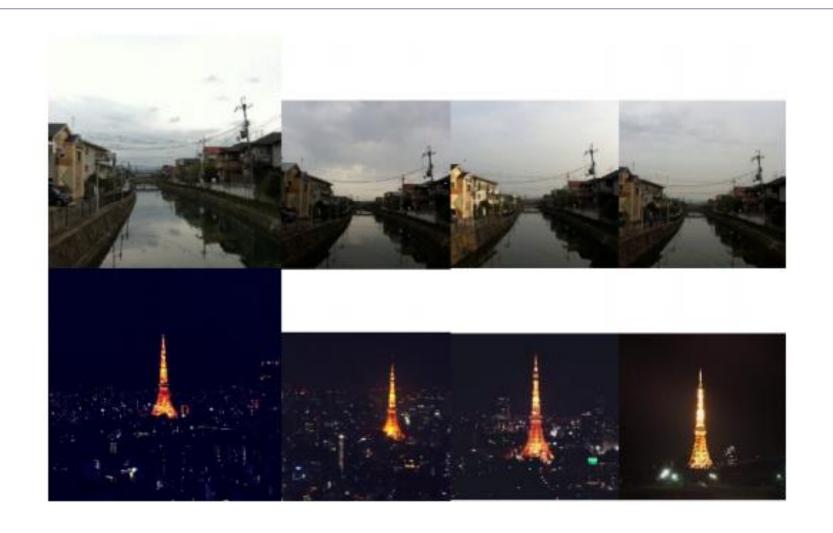
Experiments



Experimental results



Examples



Examples

Visual features only

Conclusion

- We proposed a method to localize Twitter photos
- integration of both features improved localization accuracy compared to using only single modality