
ⓒ 2016 UEC Tokyo.

Caffe2C: A Framework for Easy Implementation
of CNN-based Mobile Applications

Ryosuke Tanno and Keiji Yanai

Department of Informatics,

The University of Electro-Communications, Tokyo

ⓒ 2016 UEC Tokyo.

1. INTRODUCTION

ⓒ 2016 UEC Tokyo.

• Deep Learning achieved remarkable progress

– E.g. Audio Recognition, Natural Language Processing,

• Especially, in Image Recognition, Deep Learning gave
the best performance

– Outperform even humans such as recognition of 1000
object(He+, Delving deep into rectifier, 2015)

Deep Learning(DNN,DCNN,CNN)

0

20

40

60

80

100

2010 2011 2012 2013 2014 2015 Human
Trained

72% 75%
85% 88.3% 93.3% 96.4% 94.9%

SIFT+BOF

Deep Learning

Deeeeeeeep

Outperform
Human !

ⓒ 2016 UEC Tokyo.

• Many Deep Learning Framework have emerged

– E.g. Caffe, TensorFlow, Chainer

Deep Learning Framework

ⓒ 2016 UEC Tokyo.

Convolution Architecture For Feature Extraction(CAFFE)

Open Framework, models and examples for Deep Learning

• Focus on Compuer Vision

• Pure C++/CUDA architecture for deep learning

• Command line, Python MATLAB interface

• Fastest processing speed

• Caffe is the most popular framework in the world

What is Caffe?

ⓒ 2016 UEC Tokyo.

• There are many attempts to archive CNN on the
mobile

– Require a high computational power and memory

Bring to CNN to Mobile

High Computational Power and Memory are Bottleneck!!

ⓒ 2016 UEC Tokyo.

Files

• 3 files are required for Training -> Output: Model

– 3 files: Network definition, Mean, Label

How to train a model by caffe?

Training

･Network
･Mean
･Label

3 files

Dataset

Output

･Caffemodel

Use these 4 files
on mobile

ⓒ 2016 UEC Tokyo.

• We currently need to use OpenCV DNN module

– not optimized for the mobile devices

– their execution speed is relatively slow

Use the 4 Files
by Caffe on the Mobile

･Network
･Mean
･Label
･Model

4 files

ⓒ 2016 UEC Tokyo.

• We create a Caffe2C which converts the CNN model
definition files and the parameter files trained by
Caffe to a single C language code that can run on
mobile devices

• Caffe2C makes it easy to use deep learning on the C
language operating environment

• Caffe2C achieves faster runtime in comparison to
the existing OpenCV DNN module

Objective

･Network
･Mean
･Label
･Model

4 files
Caffe2C

Single C code

ⓒ 2016 UEC Tokyo.

• In order to demonstrate the utilization of the Caffe2C,
we have implemented 4 kinds of mobile CNN-based
image recognition apps on iOS.

Objective

ⓒ 2016 UEC Tokyo.

1. We create a Caffe2C which converts the model
definition files and the parameter files of Caffe into
a single C code that can run on mobile devices

2. We explain the flow of construction of recognition
app using Caffe2C

3. We have implemented 4 kinds of mobile CNN-based
image recognition apps on iOS.

Contributions

ⓒ 2016 UEC Tokyo.

2. CONSTRUCTION OF CNN-BASED
MOBILE RECOGNITION SYSTEM

ⓒ 2016 UEC Tokyo.

• In order to use the learned parameters by Caffe on
mobile devices, it is necessary to currently use the
OpenCV DNN module not optimized, relatively slow

• We create a Caffe2C which converts the CNN model
definition files and the parameter files trained by Caffe
to a single C language code

– We can use parameter files trained by Caffe on mobile devices

Caffe2C

ⓒ 2016 UEC Tokyo.

• Caffe2C achieves faster execution speed in comparison
to the existing OpenCV DNN module

Caffe2C

Caffe2C OpenCV DNN

AlexNet

iPhone 7 Plus 106.9 1663.8

iPad Pro 141.5 1900.1

iPhone SE 141.5 2239.8

Runtime[ms] Caffe2C vs. OpenCV DNN(Input size: 227x227)

Speedup Rate:
About 15X～

ⓒ 2016 UEC Tokyo.

1. Caffe2C directly converts the Deep Neural Network to
a C source code

Reasons for Fast Execution

Caffe2C

OpenCV DNN

･Network
･Mean
･Label
･Model

Caffe2C
Single C code

Execution
like Compiler

Execution
like Interpreter

ⓒ 2016 UEC Tokyo.

2. Caffe2C performs the pre-processing of the CNN as
much as possible to reduce the amount of online
computation

– Compute batch normalization in advance for conv weight.

3. Caffe2C effectively uses NEON/BLAS by multi-threading

Reasons for Fast Execution

･Network
･Mean
･Label
･Model

4 files
Caffe2C

Single C code

ⓒ 2016 UEC Tokyo.

Deployment Procedure

1. Train Deep CNN model by Caffe

2. Prepare model files

3. Generate a C source code by Caffe2C automatically

4. Implement C code on mobile with GUI code

Trained Deep
CNN Model

Deep CNN

Train Phase
1

・Caffemodel
・Network
・Mean
・Label

Model
Preparation

2

Convert
C code

3

Caffe2C

Implement
on Mobile

4

ⓒ 2016 UEC Tokyo.

3. IMAGE RECOGNITION SYSTEM
FOR EVALUATION

ⓒ 2016 UEC Tokyo.

• In order to demonstrate the utilization of the Caffe2C，
we have implemented four kinds of mobile CNN-
based image recognition apps on iOS

• We explain image recognition engine used in the iOS
application

Image Recognition System
for evaluation

ⓒ 2016 UEC Tokyo.

CNN Architecture
• A representative architectures are AlexNet VGG-16 GoogleNet

AlexNet

VGG-16

Network-In-Network

or NIN

ⓒ 2016 UEC Tokyo.

CNN Architecture
• The number of weights in AlexNet and VGG-16 is

too much for mobile.

• GoogLeNet is too complicated
for efficient parallel implemen
-tation. (It has many branches.)

ⓒ 2016 UEC Tokyo.

CNN Architecture

• We adopt Network-in-Network (NIN).

– No fully-connected layers (which bring less parameters)

– Straight flow and consisting of many conv layers

– relatively smaller than the other architectures

⇒ It’s easy for parallel implementation.
Efficient computation for conv layers is needed !

Network-In-Network(NIN)

ⓒ 2016 UEC Tokyo.

Fast computation of conv layers
- efficient GEMM with 4 cores and BLAS/NEON -

• Conv = im2col + GEMM (Generic Matrix Multiplication)

conv. kernels
input feature maps

2

3

patch
1

patch
2

patch
3

patch
4

patch
51

4

matrix multiplication (=conv. layer computation)

Parallel computation over multiple cores
Inside each core NEON or BLAS is used.

✕
im2col

kernel 2

kernel 3

kernel 1

kernel 4

p
at

ch
 1

p
at

ch
 2

p
at

ch
 3

p
at

ch
 4

p
at

ch
 5

p
at

ch
 1

p
at

ch
 2

p
at

ch
 3

p
at

ch
 4

p
at

ch
 5

kernel 1 ✕

Core1

✕kernel 2

p
at

ch
 1

p
at

ch
 2

p
at

ch
 3

p
at

ch
 4

p
at

ch
 5

Core2 Core3

✕kernel 3
p

at
ch

 1
p

at
ch

 2
p

at
ch

 3
p

at
ch

 4
p

at
ch

 5

Core4

✕

p
at

ch
 1

p
at

ch
 2

p
at

ch
 3

p
at

ch
 4

p
at

ch
 5

kernel 4

ⓒ 2016 UEC Tokyo.

• Speeding up Conv layers →Speeding up GEMM

– computation of conv layer is decomposed into “im2col”
operation and generic matric multiplications(GEMM)

– Multi-threading: Use 2cores in iOS , 4 cores in Android in
parallel

– SIMD instruction(NEON in ARM-based processor)
• Total: iOS: 2Core*4 = 8calculation, Android: 4Core*4 = 16 calculation

– BLAS library(highly optimized for iOS⇔ not optimized for
Android)
• BLAS(iOS: BLAS in iOS Accelerate Framework, Android: OpenBLAS)

Fast Implementation on Mobile

ⓒ 2016 UEC Tokyo.

Evaluation: Processing time

• iOS: BLAS >> NEON, Android: BLAS << NEON

– For iOS, using BLAS in the iOS Accelerate Framework is the
best choice.

– For Android, using NEON (SIMD instruction) is better than
OpenBLAS.

NEON BLAS Devices BLAS

iOS 181.0 55.7 iPhone 7 Plus Accelerate

iOS 222.4 66.0 iPad Pro Accelerate

iOS 251.8 79.9 iPhone SE Accelerate

Android 251.0 1652.0 GALAXY Note 3 OpenBLAS

Recognition Time[ms] BLAS vs. NEON

Highly
optimized

ⓒ 2016 UEC Tokyo.

Comparison to FV-based Previous Method
Deep Learning with UEC-FOOD100 dataset
• Much improved (65.3% ⇒ 81.5% (top-1))

• Even for 160x160 improved (65.3% ⇒ 71.5%)

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

1 2 3 4 5 6 7 8 9 10

AlexNet

NIN 5layer [104ms]

NIN 4layer [67ms]

NIN 4layer (160x160) [33ms]

FV (Color+HOG) [65ms]

Top1:
81.5%

Top1:
65.3%

Top5:
96.2%

Top5:
86.7%

Top-N
Classification
Accuracy

Top-N

Kept almost
the same

ⓒ 2016 UEC Tokyo.

4. MOBILE APPLICATIONS

ⓒ 2016 UEC Tokyo.

• We have implemented 4 kinds of mobile CNN-based
image recognition apps on iOS

– Food recognition app: “DeepFoodCam”

– Bird recognition app: “DeepBirdCam”

– Dog recognition app: “DeepDogCam”

– Flower recognition app: “DeepFlowerCam”

4 iOS Applications

ⓒ 2016 UEC Tokyo.

DeepFoodCam

• Recognize 101 classes including 100 food classes and
one nonfood class

Training Phase

• fine-tuned the CNN with 101 class images

– totally 20,000 images

– UECFOOD-100 and non-food collected from Twitter

Target Top-1 Top-5

Food 101 class 74.5% 93.5%

Accuracy

ⓒ 2016 UEC Tokyo.

• Recognize 200 bird class

Training Phase

• fine-tuning CNN with 6033 images of Caltech-UCSD
Birds 200 Dataset

DeepBirdCam

Target Top-1 Top-5

Bird 200 class 55.8% 80.2%

Accuracy

ⓒ 2016 UEC Tokyo.

• Recognize 100 dog class

Training Phase

• fine-tuning CNN with 150 and over images per class
of Stanford Dogs Dataset Dataset

DeepDogCam

Target Top-1 Top-5

Dog 100 class 69.0% 91.6%

Accuracy

ⓒ 2016 UEC Tokyo.

• Recognize 102 flower class

Training Phase

• fine-tuning CNN with 80 and over images per class of
102 Category Flower Dataset

DeepFlowerCam

Target Top-1 Top-5

Flower 102 class 64.1% 85.8%

Accuracy

ⓒ 2016 UEC Tokyo.

• We have implemented 4 kinds of mobile CNN-based
image recognition apps on iOS

– Food recognition app: “DeepFoodCam”

– Bird recognition app: “DeepBirdCam”

– Dog recognition app: “DeepDogCam”

– Flower recognition app: “DeepFlowerCam”

4 iOS Applications

If you prepare training
data, you can create
mobile recognition
apps in a day !!

ⓒ 2016 UEC Tokyo.

1. We create a Caffe2C which converts the model
definition files and the parameter files of Caffe into
a single C code that can run on mobile devices

2. We explain the flow of construction of recognition
app using Caffe2C

3. We have implemented 4 kinds of mobile CNN-based
image recognition apps on iOS.

Conclusions

ⓒ 2016 UEC Tokyo.

• We implemented apply our mobile framework into
real-time CNN-based mobile image processing

– such as Neural Style Transfer

Additional work

ⓒ 2016 UEC Tokyo.

Thank you for listening

Object Recognition

Neural Style Transfer

iOS App is Available !

“DeepFoodCam“

iOS App is Available !

“RealTimeMultiStyleTransfer”

ⓒ 2016 UEC Tokyo.

Extension of NIN
adding BN, 5layers, multiple image size

• Modified models (BN, 5layer, multi-scale)

– adding BN layers just after all the conv/cccp layers

– replaced 5x5 conv with two 3x3 conv layers

– reduced the number of kernels in conv 4 from 1024 to 768

– replaced fixed average pooling with Global Average Pooling

• Multiple image size

4layers

5layers+BN

227x227 180x180 160x160 Trade-off: Accuracy vs speed

227x227
55.7ms 78.8%

180x180
35.5ms 76.0%

160x160
26.3ms 71.5% Global Average Pooling (GAP)

