Efficient Mobile Implementation of A CNN-based Object Recognition System

Keiji Yanai, Ryosuke Tanno, Koichi Okamoto The University of Electro-communications, Tokyo, Japan

1. Objective

- Make it easier to implement CNN-based object recognition apps !
- High recognition accuracy by using Deep Convolutional Neural Network
- Very high speed by efficient implementation
- Memory saving by PQ-based weight compression
- Converting CNN models trained by Caffe into mobile object recognition engines
- Example: 100-class food recognition
 - recognition time: 26.2ms (iPhone7+)
 - top-5 accuracy: 93.7%

DeepFoodCam DeepBirdCam DeepDogCam

4. Fast Implementation on Mobile Devices

- Speeding up Conv layers ⇒ Speeding up GEMM
 - computation of conv layers is decomposed
 - into "im2col" operation and generic matrix multiplications (GEMM)
 - Multi-threading : Use 2 cores in iOS , 4 cores in Android in parallel
 - SIMD instruction (NEON in ARM-based processor)
 - NEON can compute four FP comp. in parallel. \Rightarrow four times speedup Total: iOS: 2Core*4 = 8 calculation, Android: 4Core*4 = 16 calculation
 - BLAS library (highly optimized for iOS \Leftrightarrow not optimized for Android) BLAS (iOS: BLAS in iOS Accelerate Framework, Android: OpenBLAS)

2. Contributions

- Compare CNN architectures and select NIN for a base mobile CNN Compare AlexNet, VGG-16, GoogleNet and Network-in-Network (NIN) Conclude that NIN is the best architecture for mobile implementation in terms of weight size and computational efficiency
- Examine fast CNN implementations on iOS and Android
 - For iOS, using BLAS in the iOS Accelerate Framework is the best choice. – For Android, using NEON (SIMD instruction) is better than OpenBLAS.
- Adjust speed and accuracy by multi-scale NIN
 - By introducing Global Average Pooling (GAP) into the last layer of NIN, NIN accepts input images of any size like FCN
 - User can adjust the balance between speed and accuracy by changing the size of input images
 - e.g. iPhone 7 Plus: **26.2**[ms] for 160x160 imgs ⇔ **55.7**[ms] for 227x227
- PQ-based weight compression of Conv Layers
 - 1/8 compression without significant performance loss

3. CNN Architectures & Multi-scale NIN

5. Weight Compression

- We applied Product Quantization (PQ) [2] to compress CNN weights for NIN to reduce required memory on mobile devices. – no compression to 1/16 compression
 - 8bit and 4bit: We applied quantization to each single element
 - -4 bit(pair) and 2bit(pair): We applied quantization to each pair of elements
- PQ-based compression is helpful for NIN as well.
 - Performance loss(4bit(pair)) was only 2.1 point, although it

brought 1/8 compression_

	raw(32bit)	8bit	4bit	4bit(pair)	2bit(pair)
memory	30.4MB	7.6MB	3.8MB	3.8MB	1.9MB
+ a.a. 1					

•As basic CNN architectures for object recognition, AlexNet, Networkin-Network (NIN), GoogLeNet and VGG-16 are commonly used.

- The amounts of weights in **AlexNet** and **VGG-16** are too much for mobile.
- **GoogLeNet** is too complicated for efficient parallel implementation.

(It has many branches.)

•We adopt Network-in-Network[1]

- No fully-connected layers (which brings less weights)
- Straight flow and consisting of only convolutional and pooling layers \Rightarrow It's easy for parallel implementation.

Efficient computation for convolutional layers is important !

•We modified models (BN, 5layer, multi-scale)

- adding BN[3] layers just after all the conv/cccp layers (top-1)

mo	del	AlexNet	VGG-16 GoogleNet		NIN				
	layer	5	13	21	12				
conv	weights	3.8M	15M	5.8M	7.6M				
	comp.	1.1B	15.3B	1.5B	1.1B				
	layer	3	3	1	0				
FC	weights	59M	124M	1M	0				
	comp.	59M	124M	1M	0				
τοται	weights	62M	138M	6.8M	7.6M				
IUIAL	comp.	1.1B	15.5B	1.5B	1.1B				
nageNet	top-5 err.	17.0%	7.3%	7.9%	10.9%				

Trade-off: Accuracy vs speed

Ex. 4layer+BN (iPhone7Plus)

227x227

top-1 | 74.5% | 66.8% 72.9% /5.0% 50.3% 92.9% 93.7% 93.5% 89.7% 78.1% top-5

6. Experiments

Implementation

- We have implemented a mobile deep learning framework which works on both iOS and Android.
- Supports only deployment of trained CNN models on iOS and Android
- Using Caffe for training of CNN models on a PC (2 Titan-X GPUs)

<u>Recognition time on mobile devices (227x227)</u>

	NIN(BLAS)	NIN(NEON)	NIN4	NIN5	D-Belief
iPhone 7 Plus	-	_	55.7[ms]	88.7[ms]	109.0[ms]
iPad Pro	66.0 [ms]	221.4[ms]	66.6[ms]	103.5[ms]	131.9[ms]
iPhone SE	79.9 [ms]	251.8[ms]	77.6[ms]	116.6[ms]	137.7[ms]
Galaxy Note 3	1652[ms]	251.1 [ms]	-	_	_

• Training

- augmented UEC

Trade-off between Time and accuracy

with images o	f various size	for	multi-scale NIN

real and EVE as multiple two 2v2 as multiples			55.7ms 78.8%	(100	(1000 images / class) <u>(A)4-layer+BN</u>								
– replaced 5x5 conv with two 3x3 conv layers			180x180				Time	227x227	200x200	180x180	160x160		
– red	uced the	number	of kernels in conv 4 from 1	.024 to 768	35.5ms 76.0%	 Pre-trained CNNs with 		iPhone 7 Plus	55.7[ms]	42.1[ms]	35.5[ms]	26.2 [ms]	
ror	laced fiv	ad avora	to pooling with Clobal Ave	orago Dooling	160x160	ImageNet 2000 category			iPad Pro	66.6[ms]	49.7[ms]	44.0[ms]	32.6[ms]
- replaced fixed average pooling with Global Average Pooling 26.2ms 71.5%			26.2ms 71.5%	(110)(0000121000 food 1000)			iPhone SE	77.6[ms]	56.0[ms]	50.2[ms]	37.2[ms]		
layer no.	(1) original NIN	(2) 4layers+BN	(3) 5layers+BN Network-In-Network	k(NIN)		(ILSVRC2)	012 100	U, TOOd LUUU)	Accuracy	top-1 top-5	top-1 top-5	top-1 top-5	top-1 top-5
1	11x11x96 conv1	11x11x96 conv1	11x11x96 conv1	256 384 3x3x256x384 3x3x1024x1000	1000 /// /t. 1000	(totally 2	.1 millio	n images)	resize	78.8% 95.2%	77.3% 95.1%	76.0 % 94.1%	69.3% 91.5%
2	1x1x96 cccp1_1	1x1x96 cccp1_1	1x1x96 cccp1_1	384 384 13 1024 1024 6		Recoan	ition acci	iracy of the	crop	78.8% 95.2%	75.8% 93.9%	72.0% 92.1%	63.0% 87.7%
4	5x5x256 conv2	3x3x256 conv2_1	3x3x256 conv2_1 ²²⁴		4layers	<u>necogn</u>			multi-resize	74.7% 93.9%	74.0% 94.6%	74.4% 94.7 %	71.5% 93.7%
5	1x1x256 cccp2_1	3x3x256 conv2_2	3x3x256 conv2_2			<u>ti</u>	rained mo	odels	multi-crop	74.7% 93.9%	70.8% 92.2%	69.8% 92.2%	61.4% 87.2%
6 7	1x1x256 cccp2_2	1x1x256 cccp2_1	1x1x256 cccp2_1			model	ImageNet2000	UEC-FOOD		//			
8	1x1x384 cccp3 1	3x3x384 conv3	3x3x384 conv3	5lavers + B	N		top-1 top-5	top-1 top-5 weights		<u>(</u> <u></u>	j5-layer+Bl	V	
9	1x1x384 cccp3_2	1x1x384 cccp3_1	1x1x384 cccp3_1 224 11x11x3x96 55 55 55 55x5x96x256	256 384 222/10/4/1000	384 1000 M	FV(HOG+color)		65.3% 86.7% 5.6M	Time	227x227	200x200	180x180	160x160
10	3x3x1024 conv4	1x1x384 cccp3_2	1x1x384 cccp3_2	384 384 13 1024 1024 6		AlexNet	44.5% 67.8%	78.8% 95.2% 62IVI	iPhone 7 Plus	88.7[ms]	59.3[ms]	49.5[ms]	38.7 [ms]
11	1x1x1024 cccp4_1	3x3x768 conv4	3x3x768 conv4			NIN NIN(4lavers+BN)	41.9% 05.9% 39.8% 65.0%	77.9% 94.6% 5.5M	iPad Pro	103.5[ms]	71.9[ms]	61.1[ms]	46.6[ms]
12	avg. pool	1x1x708 cccp4_1	$1 \times 1 \times 768 \operatorname{cccp4}_1 \qquad \qquad$			NIN(5layers+BN)	45.8% 70.5%	80.8% 95.4% 15.8M	iPhone SE	116 6[ms]	82 9[ms]	68.6[ms]	53 4[ms]
14	softmax	avg. pool	3x3x1024 conv5					• • •		ton_1 ton_5	top_1 top_5	ton-1 ton-5	ton-1 ton-5
15		softmax		3 11x11x3x96 96 256	384 1000				Accuracy				10p-1 $10p-3$
16			1x1xN cccp5_2	96 96 ⁵⁵ 256 256 27 3x3x256x384 384 30					resize	81.5% 96.2%	80.2% 95.7%	78.4 % 94.9%	72.0% 91.4%
17			avg. pool						crop	81.5% 96.2%	/8.3% 95.1%	/5.1% 93.6%	65.3% 87.3%
Lð Weights	7 6 Million	5 5 Million	15.8Million						multi-resize	78.2% 95.3%	78.2% 95.1%	78.2% 95.6 %	75.1% 93.8%
computation	1.1Billion	1.2Billion	1.7Billion 227x227 200x200 180x180 160x160	Global Av	erage Pooling (GAP)				multi-crop	78.2% 95.3%	75.8% 93.2%	73.1% 92.2%	66.3% 88.3%

Reference

[1] M. Lin, and Q. Chen, and S. Yan.: Network In Network. Proc. of International Conference on Learning Representations, 2014

[2] H. Jegou, M. Douze, and C. Schmid.: Product quantization for nearest neighbor search, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011

[3] S. loffe and C. Szegedy.: Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proc. of International Conference on Machine Learning, 2015