Automatic Construction of Action Datasets using Web videos with **Density-based Cluster Analysis and Outlier Detection** Nga Do and Keiji Yanai (The University of Electro-Communications, Tokyo)

Introduction

- Previous work: require additional data (e.g.: tags[3]), ignore concept diversity problem
- > This work: can exploit Web videos without tags,

copes with concept diversity

Proposed Approach

soccer

Experiments and Results

Experiment 1: Dataset Construction

- Data: Web videos (YouTube) \bullet
- Actions: 11 actions in UCF11[2] \bullet
- Precision rate = percentage of relevant shots among top 100 shots [3]
- Baseline[3]: VisualRank based method

Experiment 2: Action Classification

- Dataset: UCF11[2]
- Precision = average of 25-fold validation
- Training data: standard data[2] & shots automatically obtained in Experiment 1

Action	Proposed	Baseline	Action	Proposed	Baseline
basketball	50	35	swing	36	31
biking	23	17	tennis_swing	47	51
diving	35	28	trampoline_jumping	54	54
golf_swing	52	54	volleyball_spiking	58	69
horse_riding	50	42	walking	14	9
soccer_juggling	68	63	Average	44.3	41.1

golf_swing

horse_riding

[1] Mihael et al. OPTICS: Ordering Points To Identify the Clustering Structure. ACM SIGMOD International Conference on Management of Data, 1999, pp. 49-60. [2] Jingen et al. Recognizing realistic actions from videos. IEEE Computer Vision and Pattern Recognition, 2009, pp. 1996-2003.

[3] Nga et al. Automatic Construction of an Action Video Shot Database using Web Videos. IEEE International Conference on Computer Vision, 2011, pp. 527-534. [4] Karen et al. Two-Stream Convolutional Networks for Action Recognition in Videos. Advances in Neural Information Processing Systems 27, 2014, pp. 568-576. [5] Chiu et al. Enhancements on local outlier detection. IEEE Database Engineering and Applications Symposium, 2003, pp. 298 – 307.