
HAND DETECTION AND TRACKING FOR FINE-GRAINED ACTION RECOGNITION

Nga H. Do and Keiji Yanai

The University of Electro-Communications, Tokyo

General recognition vs. fine-grained recognition

- Fine-grained activity recognition
 - Database: Cooking fine-grained activities (Rohrbach et al. CVPR2012)
 - Activity = composite of multiple actions
 - Eg.: take X from fridge = open fridge + take X
 - Recognition accuracies by state-of-the-art:
 - Rohrbach et al. ECCV2012: 21.3%
 - Ni et al. CVPR2014: 28.6%

tough problem!

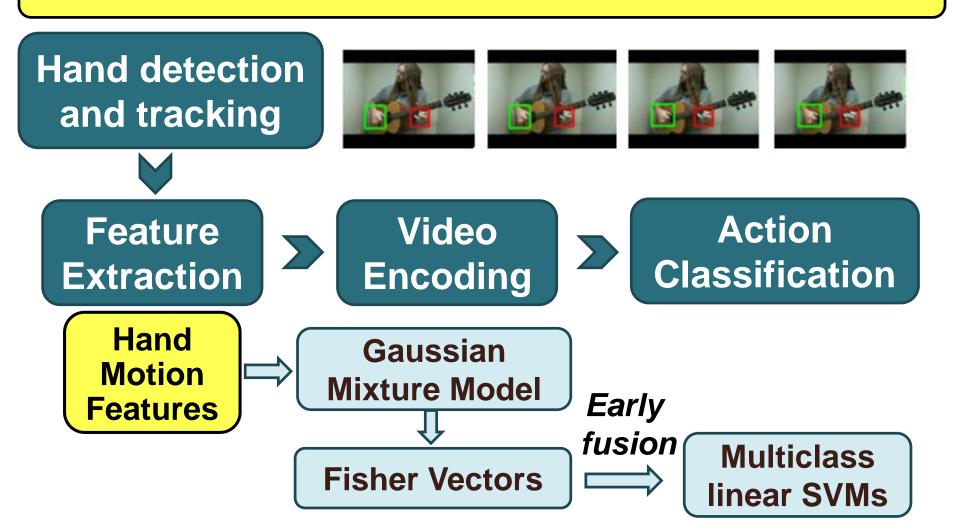
Should we consider a simpler problem?

- Fine-grained action recognition
 - Sub-problem of fine-grained activity recognition
 - Target: single actions

Can we apply fine-grained activity recognition approaches to fine-grained action recognition?

- Most popular approaches for fine-grained activity recognition:
 - Object detection + Human-object interactions

B. Ni, V. R. Paramathayalan, and P. Moulin. Multiple granularity analysis for fine-grained action detection. CVPR 2014.


- Most popular approaches for fine-grained activity recognition:
 - Object detection + Human-object interactions
 - Disadvantages:
 - requirement of training data for object detectors
 - inefficiency in case of similar objects

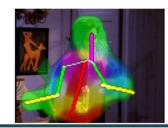
- This work:
 - fine-grained action classification based on how human use their hands to operate the actions
 - Hand motion features for fine-grained action recognition
 - A system of hand detection and tracking in uncontrolled videos

Proposed Method

Fine-grained action recognition based on hand movements

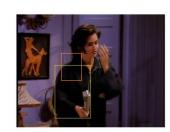
Hand Detection

http://groups.inf.ed.ac.uk/calvin/calvin_upperbody_detector/


current

next frame

(1b) Upper body


selection

-

flow field

- P. Weinzaepfel, J. Revaud, Z. Harchaoui, and
- C. Schmid. DeepFlow: Large displacement optical flow with deep matching. ICCV2013.

Hand detection

(2) Static cue based

hand detection

A. Mittal, A. Zisserman, and P. H. S. Torr. Hand detection using multiple proposals. BMVC 2011.

Image

HOG based

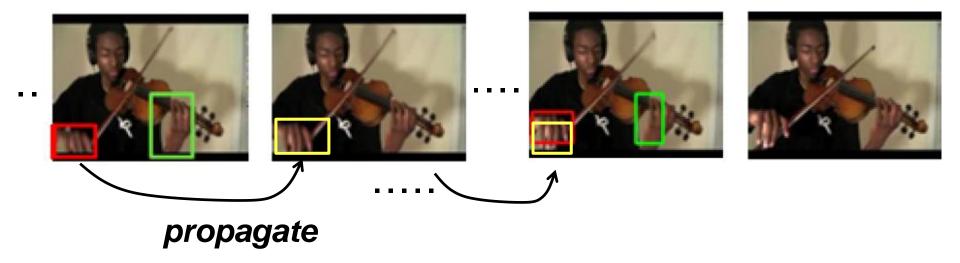
Skin based hand detection hand detection

Super-pixel based NMS

Postprocessing

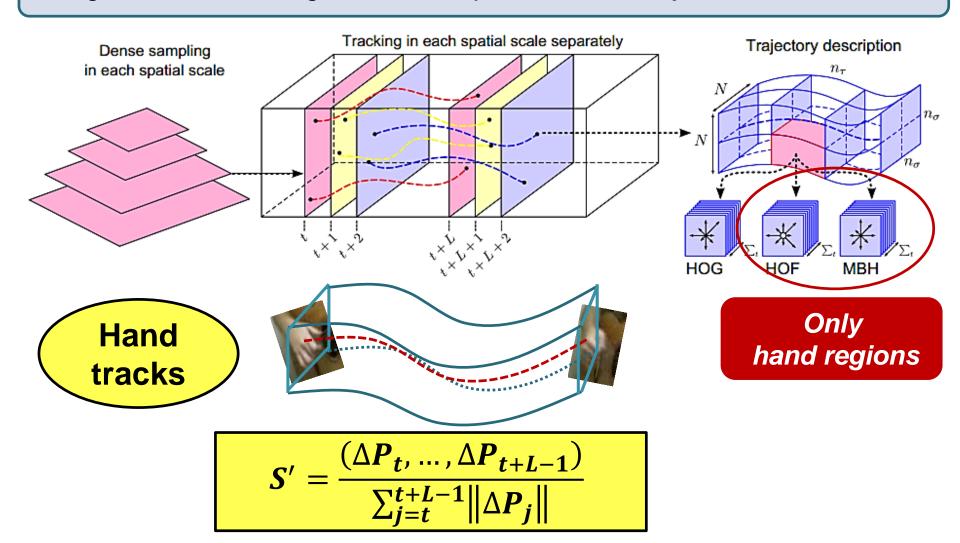
- PASCAL VOC
- **Buffy Stickman**
- INRIA Pedestrian
- etc

Hand detection



 $final\ score = Mittal's\ detector\ score + w_f \alpha_f + w_u \alpha_u$

flow score:
$$\alpha_f = \frac{1}{N} \sum_{i=1}^{N} \sqrt{u_i^2 + v_i^2}$$
 upperbody score: $\alpha_u = \frac{area(B_d \cap B_u)}{area(B_d)}$ $w_f = 0.7, w_u = 0.2$


Proposed Method Hand tracking

Select detections which overlap with many others

Extraction of Hand Motion Features

Wang et al. Action recognition with improved dense trajectories. CVPR 2013.

5.4 Experiments and Results

Data and Evaluation Methods

Exp.	Dataset	Evaluation method
Hand detection	Video Pose 2.014 video shots2453 frames3814 hands	 Average precision Overlap score > 0.5 O = \frac{area(B_g \cap B_d)}{area(B_g \cup B_d)}
Fine-grained action recognition	Playing Instruments (UCF101) 10 types of instruments 1428 videos	 Average precision 3 training/test splits ¹

¹ ICCV2013 Workshop on Action Recognition with a Large Number of Classes

Data Thumbnails

play daf

play tabla

Experiments and Results

Hand Detection Performance

	Precision	Method	
still features	41.7%	Mittal et al.	
motion features	18.6%	Sapp et al.*	
still features +	42.6%	Our (upper body)	
motion features	45.5%	Our (flow)	
	46.3%	Our (flow+body)	

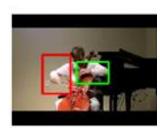
^{*} Sapp et al. Parsing human motion with stretchable models. CVPR2011. (flow based hand detector only)

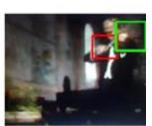
Examples of Detection Results

Mittal et al.

Sapp et al.






Our

UCF101 Playing instruments

Action recognition performance

Method	Precision	
DT	66.7%	
HOF_{dt}	83.8%	
MBH_{dt}	86.6%	
$MBH_{dt} + HOF_{dt} + DT$	87.3%	
HDT	66.1%	
HOF_{hdt}	81.4%	
MBH_{hdt}	85.7%	
$MBH_{hdt} + HOF_{hdt} + HDT$	86.2%	
HT	36.0%	
$MBH_{dt} + HOF_{dt} + DT + HT$	87.6%	
$MBH_{hdt} + HOF_{hdt} + HDT + HT$	88.5%	

DT: Dense Trajectory
HDT: Dense Trajectory
on Hands

HT: Hand Tracks

whole frame (more features)

only hand regions

Conclusions

 Proposed a system of hand detection and tracking in videos

- Applied the system to fine-grained action recognition
 - Action recognition based on only hand motion features