Food Image Recognition with Deep Convolutional Features

Yoshiyuki Kawano, Kejji Yanai The University of Electro-Communications, Tokyo

Background+Objective

- * Healthful eating habit is important to avoid obesity and diseases.
- * If there is a food recommendation system, it is work to keep people in good health.

* A food recognition engine is needed to build a automatic food recommendation system.

Food recognition: Deep Convolutional Neural Network (DCNN) boosts food recognition.

- integrating it with conventional hand-crafted image features.

CNN Feature

Architecture of CNN (quoted from [8]) [8]: Krizhevsky. A et. al.: ImageNet Classification with Deep Convolutional Neural Networks. In NIPS 2012

- Deep Convolutional Neural Network (DCNN) pre-trained with the ILSVRC2012 1000-class dataset
- 4096-d DCNN feature:

L2-normalized output signals from the 6-th layer (one layer before the last layer)

Conclusions

CNN features which are extracted from the pre-trained DCNN into 100 kinds food photo recognition.

In the experimental results, we have obtained 72.26% classification rate.

Food Image Recognition

Query Image

Features

- RootHOG FV: gradient (8 orients, 2x2) Local patch: 16x16 and 24x24
- Color FV: moment (1st, 2nd, 2x2)
 dense sampling every 5 pixel
- CNN feature
 - overfeat (http://cilvr.nyu.edu/doku.php?id=software:overfeat:start)

Classifiers

- Liblinear (http://www.csie.ntu.edu.tw/~cjlin/liblinear/)
- AROW (AROWPP: https://code.google.com/p/arowpp/)

Food Image Dataset

Food Image Dataset UEC-FOOD100:

100 kinds of food categories with bounding boxes about 100 images for each category http://foodcam.mobi/dataset

Experiments with Food Image Dataset

Recognition accuracy (5-cross validation)

