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Abstract
In this paper, we report the feature obtained from the
Deep Convolutional Neural Network boosts food
recognition accuracy greatly by integrating it with
conventional hand-crafted image features, Fisher Vectors
with HoG and Color patches. In the experiments, we have
achieved 72.26% as the top-1 accuracy and 92.00% as the
top-5 accuracy for the 100-class food dataset,
UEC-FOOD100, which outperforms the best classification
accuracy of this dataset reported so far, 59.6%, greatly.
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Introduction
Food image recognition is one of the promising
applications of object recognition technology, since it will
help estimate food calories and analyze people’s eating
habits for healthcare. Therefore, many works have been
published so far [2, 4, 7, 9, 11]. To make food recognition
more practical, increase of the number of recognizable
food is crucial. In [7,9], we created 100-class food dataset,
UEC-FOOD100, and made experiments with 100-class
food classification. The classification accuracy reported so
far was 59.6% [7], which was not enough for practical use.



Meanwhile, recently the effectiveness of Deep
Convolutional Neural Network (DCNN) have been proved
for large-scale object recognition at ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) 2012. Krizhevsky
et al. [8] won ILSVRC2012 with a large margin to all the
other teams who employed a conventional hand-crafted
feature approach. In the DCNN approach, an input data
of DCNN is a resized image, and the output is a class-label
probability. That is, DCNN includes all the object
recognition steps such as local feature extraction, feature
coding, and learning. In general, the advantage of DCNN
is that it can estimate optimal feature representations for
datasets adaptively [8], the characteristics of which the
conventional hand-crafted feature approach do not have.
In the conventional approach, we extract local features
such as SIFT and HoG first, and then code them into
bag-of-feature or Fisher Vector representations.

However, DCNN is not always applicable for any kinds of
datasets, because it requires a lots of training images to
achieve comparable or better performance to the
conventional local-feature-based methods. In our
preliminary experiments on DCNN-based food recognition
where we trained DCNN with the UEC-FOOD100 dataset,
we failed to confirm that the DCNN-based method
outperformed the conventional method. This is mainly
because the amount of training data is not enough. We
had only 100 images per food category, while ILSVRC
dataset has 1000 images per category. In general, DCNN
does not work well for a small-scale dataset, while DCNN
works surprisingly well for a large-scale dataset [6]. Then,
as a method to utilize DCNN for a small-scale dataset,
using a pre-trained DCNN with a large-scale ILSVRC
dataset as a feature vector extractor has been
proposed [3]. DCNN features can be easily extracted from
the output signals of the layer just before the last one of

the pre-trained DCNN. Chatfield et al. made
comprehensive experiments employing both DCNN
features and conventional features such as SIFT and
Fisher Vectors on PASCAL VOC 2007 and
Caltech-101/256 which can be regarded as small-scale
datasets where they have only about one hundred or less
images per class [3]. They showed that the DCNN-feature
was effective for a small-scale dataset, and they achieved
the best performance for PASCAL VOC 2007 and
Caltech-101/256 by combining DCNN features and Fisher
Vectors.

Regarding food datasets, the effectiveness of the DCNN
features is still unclear, because food datasets are a kind
of fine-grained datasets which is different from generic
datasets such as PASCAL VOC 2007 and
Caltech-101/256. In food datasets, images belonging to
different categories sometimes look very similar to each
other. Food image recognition is regarded as the more
difficult task than image recognition of generic categories.
Then, in this paper, we apply DCNN features for 100-class
food dataset and examine the effectiveness of DCNN
features for food photos by following Chatfield et al.’s
work [3].

Methods
DCNN Features
Recently, it has been proved that Deep Convolutional
Neural Network (DCNN) is very effective for large-scale
object recognition. However, it needs a lot of training
images. In fact, one of the reasons why DCNN won the
ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) 2012 is that the ILSVRC dataset contains one
thousand training images per category [8]. This situation
does not fit food datasets most of which have only about
one hundred images a food category. Then, to make the



best use of DCNN for food recognition, we use the
pre-trained DCNN with the ILSVRC 1000-class dataset as
a feature extractor.

Following [3], we extract the network signals just before
the last layer of the pre-trained DCNN as a DCNN feature
vector. Since we used the same network structure
proposed by Krizhevsky et al. [8], the number of elements
in the last layer is the same as the number of the classes,
1000, and the number of elements in the layer just before
the last one is 4096. Therefore, we obtain a 4096-dim
DCNN feature vector for a food image. As
implementation of DCNN, we used OverFeat 1.

Conventional Features
As conventional features, we extract RootHoG patches
and color patches, and code them into Fisher Vector (FV)
representation with Spatial Pyramid with three levels
(1x1+3x1+2x2). Fisher Vector is known as a
state-of-the-art coding method [10].

RootHoG is an element-wise square root of the L1
normalized HOG, which is inspired by “RootSIFT” [1].
The HOG we use consists of 2× 2 blocks (totally four
blocks). We extract gradient histogram regarding eight
orientations from each block. The total dimension of a
HOG Patch feature is 32. After extraction of HOG
patches, we convert each of them into a “RootHOG”.

As color patches, we extract mean and variance values of
RGB value of pixels from each of 2× 2 blocks. Totally, we
extract 24-dim Color Patch features.

After extracting RootHoG patches and color patches, we
apply PCA and code them into Fisher Vectors (FV) with
the GMM consisting of 64 Gaussians. As results, we

1http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

obtain a 32768-dim RootHOG FV and a 24576-dim Color
FV for each image. This setting is almost the same as [7]
except for the number of spatial pyramid levels.

Classifiers
We use one-vs-rest linear classifiers for 100-class food
classification. For integrating both DCNN features and
conventional features, we adopt late fusion with no
weighting. For lower-dimensional DCNN features, we use
a standard linear SVM, while for higher-dimensional FV
features, we use an online learning method, AROW [5].
As their implementations, we use LIBLINEAR 2 and
AROWPP 3.

Experiments
As a food dataset for the experiments, we use the
UEC-FOOD100 dataset [7, 9] which is an open 100-class
food image dataset 4. Part of the food categories in the
UEC-FOOD100 dataset is shown in Fig. 1. It includes
more than 100 images for each category and bounding
box information which indicates food location within each
food photo. We extract features from the regions inside
the given bounding boxes following [7]. We evaluate the
classification accuracy within the top N candidates
employing 5-fold cross validation.

Figure 2 shows classification accuracy within the top-N
candidates with each of single features, RootHOG FV,
Color FV and DCNN, the combination of RootHoG and
Color FV, and the combination of all the three features.

2http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
3https://code.google.com/p/arowpp/
4http://foodcam.mobi/dataset/



rice eels on rice pilaf chicken-’n’-egg on
rice

pork cutlet on rice beef curry sushi chicken rice fried rice tempura bowl

bibimbap toast croissant roll bread raisin bread chip butty hamburger pizza sandwiches udon noodle

tempura udon soba noodle ramen noodle beef noodle tensin noodle fried noodle spaghetti Japanese-style
pancake

takoyaki gratin

sauteed vegetables croquette grilled eggplant sauteed spinach vegetable tempura miso soup potage sausage oden omelet

ganmodoki jiaozi stew teriyaki grilled fish fried fish grilled salmon salmon meuniere sashimi grilled pacific saury sukiyaki

sweet and sour pork lightly roasted fish
steamed egg
hotchpotch

tempura fried chicken sirloin cutlet nanbanzuke boiled fish seasoned beef with
potatoes hambarg steak

steak dried fish ginger pork saute spicy chili-flavored
tofu

yakitori cabbage roll omelet egg sunny-side up natto cold tofu

Figure 1: 70 kinds of foods in the UEC-FOOD100 dataset.
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Figure 2: Classification accuracy within the top N candidate
on UEC-FOOD100 with DCNN, RootHoG-FV, Color-FV and
their combinations.

Among the three single features, DCNN, RootHoG-FV,
and Color-FV, the DCNN feature achieved the best
performance, 57.87%, in the top-1 accuracy, while
RootHoG-FV and Color-FV achieved 50.14% and 53.04%,
respectively. Although the combination of both FVs
achieved 65.32% which was better than single DCNN
features, the total dimension of the FV combination was
57,344, which 14 times as larger as the dimension of
DCNN features.

The combination of all the three features achieved
72.26% in the top-1 accuracy and 92.00% in the top-5
accuracy, which were the best performance for the
UEC-FOOD100 dataset, while the previous best was
59.5% [7]. This indicates that DCNN features has
different characteristics from the conventional local
features and Fisher Vectors, and integration of them is



important to achieve better performance rather than use
of single ones. This is a very promising result for practical
use of food image recognition technology.

Conclusions
In this work, we proposed introducing DCNN features
which are extracted from the pre-trained DCNN with the
ILSVRC 1000-class dataset into food photo recognition.
In the experimental results, we have achieved the best
classification accuracy, 72.26%, for the UEC-FOOD100
dataset, which proved that that DCNN features can
boosted the classification performance by integrating it
with the conventional features.

For future work, we will implement the proposed
framework on mobile devices. To do that, it is needed to
reduce the amount of the pre-trained DCNN parameters
which consist of about 60 million floating values.
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