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Abstract. In this paper, we propose a novel method of extracting spatio-temporal
features from videos. Given a video, we extract its features according to every set
of N frames. The value of N is small enough to guarantee the temporal dense-
ness of our features. For each frame set, we first extract dense SURF keypoints
from its first frame. We then select points with the most likely dominant and reli-
able movements, and consider them as interest points. In the next step, we form
triangles of interest points using Delaunay triangulation and track points within
each triple through the frame set. We extract one spatio-temporal feature from
each triangle based on its shape feature along with the visual features and optical
flows of its points. This enables us to extract spatio-temporal features based on
groups of related points and their trajectories. Hence the features can be expected
to be robust and informative. We apply Fisher Vector encoding to represent videos
using the proposed spatio-temporal features. We conduct experiments on several
challenging benchmarks, and show the effectiveness of our proposed method.

1 Introduction

For action recognition in a video, both spatio and temporal features are needed to repre-
sent actions, while only spatio features such as SIFT and SURF are needed for object or
scene recognition on a still image. There exist several well-known features to represent
the movements of actors performing the actions such as Histogram of Oriented Optical
Flow (HOOF) [1] or trajectory of interest points [2]. In addition to exploiting spatial
or temporal features separately, using spatio-temporal (ST) features which integrate
both visual and motion characteristics of actions is also preferred among approaches
of action recognition in videos. Some ST features have been proposed so far as spatio-
temporal extensions of local image descriptors, such as Cuboids [3,4], 3D-SIFT [5],
HOG3D [6], and Local Trinary Patterns [7].

To extract local spatio-temporal features from videos, one of the most popular meth-
ods is based on Cuboids [3,4]. However, to decide the cuboid size is a tough task.
Instead of detecting local Cuboids before extracting features from them, some recent
methods tracked interest points in video sequence then leveraged the motion informa-
tion from their trajectories [2,8]. These approaches obtained good results for action
recognition. To track interest points, either tracker based technique or point matching
based technique has been employed. Our method proposed in this paper is also based
on trajectories of interest points. We apply LDOF [9] to estimate optical flows of all
video frames.

In this paper, we propose a dense spatio-temporal feature that is comparable to state-
of-the-arts. Empirical results have shown that dense features perform better for complex
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videos [2,10,11,12]. Our idea is inspired by the work of Noguchi et al. [13]. This
method is the baseline we refer in this paper. They proposed to extract spatio-temporal
features based on moving SURF keypoints. We address some problems of their method
such as their failure in feature extraction of videos containing camera motion or holistic
decision of motion threshold in the selection of interest points. We propose simple yet
effective solutions to solve these problems. That means, similar to their method, our
method is also based on SURF interest points with robust movements, nevertheless how
we determine those points is different. Moreover, we propose to improve their feature by
exploring more aspects of selected points and introducing several novel spatio-temporal
descriptors. The experimental results show significant improvements of our method
over the baseline.

According to the success of the BoV (Bag of Visual words) on the research field
of image classification, it has became the most popular model for video representation.
Noguchi et al also applied BoV model to encode videos. In this paper, we use Fisher
Vector to represent videos instead. Fisher vector encoding technique was first applied
to image classification task several years ago, shown to extend the BOV representa-
tion [14]. The advantage of this technique has been demonstrated that it is not limited
to the number of occurrences of each visual word but it also encodes additional infor-
mation about the distribution of the descriptors. The methodology is that, (1) extracting
local features from images, (2) modelling the distribution of those features as mixtures
of Gaussian (GMM), training a soft codebook, (3) applying Fisher kernels on obtained
codebook to encode each image as a Fisher Vector. Recently, some works on action
recognition have also employed this approach to encode videos and showed the effec-
tiveness of Fisher Vector encoding over the traditional BoV [15]. In this paper, we apply
Fisher encoding technique as described in [14].

We aim to recognize human actions in realistic videos where the background is
complex. We conduct our experiments on large-scale benchmark datasets for action
recognition such as UCF-50, HMDB51 adn UCF-101 to validate our proposed method.
These datasets are not only large-scale but also challenging benchmarks for human
action recognition in realistic and challenging settings such as large variations in camera
motion, object appearance and pose, viewpoint and complicated background.

Our contribution is three-fold: first, a method of extracting spatio-temporal fea-
tures which is comparable to the state of the arts, second, a simple yet efficient selec-
tion of interest points, and finally, novel descriptorization of spatio-temporal features.
The reminder of this paper is organized as follows: Section 2 discusses more about
some related works. In Section 3, we overview the proposed method, and In Section
4 the method to extract the ST proposed feature is described in detail. Section 5 ex-
plains about conducted experiments on three large-scale action recognition datasets,
and presents the results. Conclusions are presented in Section 6.

2 Related work

So far, in the research field of action recognition, local spatio-temporal features has
been explored to represent videos. Many methods of extraction and descriptorization
of spatio-temporal features [3,16,12,4] have been proposed over the past few years. To
determine space-time regions (called as Cuboids) where features are extracted, Dollar
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et al. [3] proposed to apply 2-D Gaussian kernels to the spatial space and 1-D Gabor fil-
ters to the temporal direction. Laptev et al. [16] proposed an extended Harris detector to
extract Cuboids. As another method other than using Cuboids, extracting local features
based on trajectories of interest points also showed good results for action recogni-
tion [2,8,15]. Matikainen et al. [17] proposed to extract trajectories using a standard
KLT tracker, cluster the trajectories, and compute an affine transformation matrix for
each cluster center.

In this paper, we propose to improve method of extracting ST feature proposed by
Noguchi et al. [13]. Following [13], we also extract features based on moving SURF
points and use Delaunay triangulation to model the spatial relationships between in-
terest points. We address some problems of their method such as the inability to han-
dle camera motion or holistic decision of motion thresholds for selecting points which
cause failure in extracting features of some videos. We propose to solve these problems
by simple yet efficient methods of motion compensation and point selection.

As treatment for camera motion, Cinbis et al. [18] applied video stabilization us-
ing homography-based motion compensation approach. They estimated camera flow
by calculating the homography between consecutive frames and compensate optical
flow of points by removing estimated camera flow. Similarly, Jain et al. [8] also re-
moved camera motion from original optical flow, nevertheless they consider affine mo-
tion as camera motion. Wu et al. [19] decomposed Lagrangian particle trajectories into
camera-induced and object-induced components for videos acquired by a moving cam-
era. In. [2], Heng Wang et al. did not compensate camera motion in advance but em-
ployed motion boundary histograms which already have constant motion removed. We
also reduce the influence of any existed camera motion by canceling the constant mo-
tion. Our proposed method of motion compensation improves significantly performance
of feature extraction over the baseline since it helps not only extract features in case that
camera motion exists but also detect more robust interest points.

3 Overview of the spatio-temporal proposed feature

Our spatio-temporal feature is based on dense SURF keypoints with dominant and re-
liable movements. Here dominant and reliable points are supposed to belong to the
human who is performing the action. Our feature investigates the shape of triangles
produced by applying Delaunay triangulation on those informative points along with
the movements (flow vectors) of points within the same Delaunay triple. We show that
concatenating these features with SURF features of interest points can form a powerful
spatio-temporal feature.

Our proposed feature is dense in both space and time. We extract features with tem-
poral step size of N frames. We set the value of N to be small so that the extracted fea-
tures are temporally dense. We operate tracking of interest points through N frames. As
trajectories may drift from their precise locations during the tracking process, limiting
the tracking process within short duration like this is supposed to be able to overcome
this problem. In our experiments, we fix N as 5. The process of extracting our proposed
spatio-temporal feature from each frame set is summarized as follows:

1. Extract dense SURF keypoints of the first frame using Dense SURF [20].
2. Compute optical flows from kth frame (k = 1, 2, ..., N − 1) to the next frame

(k + 1th frame) using LDOF [9].
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3. Estimate camera motion in each frame and compensate motion if camera motion
detected (Section 3.2).

4. Select points which are expected being more informative than the others (Section
3.3) and from triangles of selected points using Delaunay triangulation.

5. Extract ST features from each triangle based on its shape along with motion fea-
tures of its points through the frame set (Section 3.4).

The main improvements of our method over our baseline can be summarized as fol-
lows: (1) treatment of camera motion, (2) selection of interest points and, (3) enhance-
ment on descriptorization of ST features. We explain in details these improvements in
following subsections.

4 The detail of the proposed method

4.1 Detection and compensation of camera motion

In Noguchi et al.’s work [13], once camera motion has been detected in a frame set,
obtained information would be considered as noise, thus no points would be selected.
Consequently, no features are extracted if the whole video contains camera motion. We
propose to solve this problem by following a simple 2-step technique:

1. Step 1: Confirm the existence of camera motion based on optical flows of SURF
keypoints. If detecting camera motion, determine the direction and magnitude of
camera motion before going to the next step.

2. Step 2: Compensate motion by canceling camera motion from original flows of
SURF keypoints.

Detection of camera motion: At the first step, we aim to find out at each frame
how the camera move in both horizontal direction (forward or backward) and vertical
direction (up or down). This step is based on our assumption that if most points move
toward the same direction, camera motion exists. Let denote P x+

and P x−
as number

of points with positive and negative optical flows respectively, P x+

m and P x−

m as number
of moving points which shift forward and backward respectively, so that we suppose
that camera is moving forward if Eq.1 and Eq.2 are satisfied or backward if Eq.3 and
Eq.4 are satisfied:

P x+

m ≥ kP x+

(1)

P x+

m > P x−

m (2)

P x−

m ≥ kP x−
(3)

P x−

m > P x+

m (4)

Here, k is a fraction threshold representing minimal required proportion of moving
points over all points with the same direction. In our experiments, we set k as 2

3 . A
point is considered as moving points if its absolute optical flow is larger than or equal to
1.The camera is supposed as horizontally stable if none of above condition is satisfied.
If the camera is detected as being moved, camera motion is calculated as average of
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Fig. 1. An example that shows efficiency of proposed method of reducing camera motion and
selecting interest points. The first row presents a frame set of consecutive frames which contains
camera motion. In this case, camera is moving (to the right), thus interest points are not detected
according to the baseline. The most left figure of the second row shows optical flows of extracted
dense SURF keypoints before the camera motion compensated. The middle figure and the right
figure of the second row respectively present points determined as moving points by the baseline
(with fixed motion threshold) and our method (with flexible threshold). Point selection of the
both are performed after compensating camera motion. This example shows that our method is
not only able to reduce the effect of camera motion but also to select more representative interest
points than the baseline.

absolute optical flows of points which moved to the same direction as camera. Camera
motion for vertical direction is estimated in the similar manner.

Compensation of camera motion: Flow of each SURF keypoint is compensated
simply as follows:

fi = fi − dfcamera (5)

Here, fi refers to flow of point i, fcamera refers to camera flow. d equals 1 if camera
moved to positive direction or -1 if camera moved to negative direction. fcamera is
measured separately for all considered directions (forward, backward, up and down) and
compensation is operated in each of those directions. By our manner, camera motion can
be compensated in most cases except for zooming. Handling this case of camera motion
is one of our future works. See Fig.1 for an example result of our motion compensation
method.

4.2 Selection of interest points

According to the baseline, selection of interest points is based on their optical flows
between the first frame and the middle frame of the frame set. A point is believed as an
interest point if its flow is larger than the pre-defined motion threshold. As a result, in
case of no significant movement than the threshold from the first to the middle frame,
no feature can be extracted. Moreover, their motion threshold is determined in holis-
tic manner and fixed for every video of every type of actions. However, due to camera
motion, video resolution, movements of background objects, and especially the diver-
sity of actions as well as actors, points selected based on a constant motion threshold
may not always be representative. For example, even though that significant movements
are expected to be caused mainly by the actor, in the background there may be objects
which move dominantly at several frames. Hence, the points belong to these objects
may be imprecisely taken as interest points. In addition, magnitude of movement may
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vary largely from action to action. For instance, sport activities such as jumping tram-
poline or swimming are supposed to cause large displacements. On the other hand,
daily activities such as drinking or talking in general generate smaller optical flows.
We demonstrate that in order to overcome these problems, motion threshold should be
flexible.

We propose to determine motion threshold flexibly and select as reliable moving
points as possible. The idea is that robustness of a point should be compared to its fel-
lows at the same time rather than to a fixed threshold. In our method, motion threshold
is estimated for every frame in all directions based on flows of its SURF points. The
following equation represents how we calculate motion threshold for a frame in forward
direction (x+). Thresholds for the remaining directions are similarly calculated.

threshfx+ = averfx+ + α(maxfx+ − averfx+ ) (6)

Here, threshfx+ means the motion threshold for frame f in x+ direction. averfx+ and
maxfx+ respectively refer to the average and the maximal flow magnitude at frame
f in x+ direction. The qualification that a point should satisfy to be considered as a
moving point is that in at least one of four considered directions, its flow magnitude is
somewhat greater than the average flow of that direction. The constant α controls that
qualification. In our experiments, we set α as 0.5. Thus, the motion threshold is near to
the median of the average and the max flows. However, in some case, at some frames,
all objects including actor stay still, thus it is not necessary that there always must be
moving points. We suppose that nothing in a frame moved if all of its thresholds are
smaller than 1.

After determining which points are moving points through the frame set, instead
of simply taking all points which ever moved like Noguchi et al, we aim to select as
many representative points as possible. We postulate a hypothesis that points with more
movements are more reliable and informative. For example, through the whole frame
set, points moved 2 times are expected to be more reliable as well as representative than
points moved only once. Based on this hypothesis, we propose to select points greedily
based on number of times they moved through the frame set. Our algorithm of point
selection is described as follows:

(Algorithm for selecting interest points.)
M = maximal number of movements (M ≤ N − 1)
T = total number of moving points
GS = group of selected points (initialized as empty)
for i = M to 1 do

GS = |GS, points moved i times |
if |GS| ≥ βT then

break;
end if

end for

Following the above algorithm, the group of selected points is only a proportion of
moving points but expected to consist of most representative points. In our experiments,
we set β as 1

2 . Fig.1 shows the effectiveness of our method of selecting interest points
over the baseline.
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4.3 Descriptorization of ST features

After selecting interest points, following the baseline, we apply Delaunay triangulation
to form triples of them. One ST feature can be obtained from each triple. Our proposed
feature extracted from a triple is constructed based on following descriptors. We classify
them to spatial descriptor which represents static visual features of points, temporal de-
scriptor which presents movements of points through the frame set and spatio-temporal
descriptor which characterizes trajectory-based visual features of points or group of
points. Below we describe in detail each descriptor.

Spatial Descriptors. To form spatial descriptor, we combine SURF descriptors of
three points of the triple at the first frame. Each SURF is extracted with subregions
of 3 by 3 pixels, Haar filters of 4 by 4 pixels and 4 subregions for SURF. Thus we
obtain 64-dimension SURF descriptor for each point [20]. However, concatenating
three SURF descriptors of three points forms a descriptor which is high-dimensional
(3 × 64 = 192)but may consist of repeated information. Thus, we apply PCA on this
descriptor to acquire a lower dimensional but more representative one, as well as re-
duce computational cost. We denote this dimension reduced descriptor as PSURF. In
our experiments, PSURF is a 96-dimension vector.

Temporal Descriptors. We propose to extract following 2 temporal features:
(1) A histogram of Optical Flow (HOOF). 3(N − 1) flow vectors of 3 points are

binned to Bo-bin histogram. Following [1], each flow vector is binned according to its
primary angle from the horizontal axis and weighted according to its magnitude. That
means, a flow vector v = [x, y] with its angle θ = tan−1(y x ) in the range:

− π

2
+ π

b− 1

Bo
≤ θ < −π

2
+ π

b

Bo
(7)

will contribute by
√
x2 + y2 to the sum in bin b. Finally, the histogram is normalized

to sum up to 1.
(2) A Histogram of Direction of Flows (HDF). Following Noguchi et al., we

binned flow vectors of 3 points within the triple according to their direction. How-
ever, in [noguchi], one histogram is calculated for each point, thus many bins be-
come zeros. This makes the motion descriptor have small effectiveness on action dis-
crimination. Here we propose to bin all flow vectors (3(N − 1) flows) into 4 bins:
x+(|fx+ | ≥ 0), x−(fx− ≥ 0), y+(fy+ ≥ 0), y−(fy− ≥ 0). Similarly to HOOF, this
histogram is also weighted by flow magnitude and normalized to sum up to 1.

Spatio-temporal Descriptors. We propose to generate the following 3 descriptors.
The first two represent visual characteristics of triangles through the frame set. The last
one descriptorizes the shape of trajectories. The last two are newly introduced by us.
Refer to Fig.2 for illustration of these proposed two features.

(1) Areas of Triangle (AT): Following Noguchi et al.’ work, the areas of the triangle
at all frames are calculated then concatenated and normalized to form a N -dimension
descriptor.

(2) A Histogram of Angles of Triangle (HAT). To better explore the shape char-
acteristics of obtained triangles, we propose to investigate their angles by binning them
based on their magnitude. Here, we consider only two angles since given the degrees of
any two out of three angles, it is sufficient to characterize the shape of a triangle. Using
two optional angles is not preferred here since they may be not representative for their
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Fig. 2. Illustration of proposed spatio-temporal features. We additionally explore characteristics
of interest points by exploiting angles of triangles formed by them (red ones) and angles shaped
by consecutive trajectories of them (green ones). We show here an example of trajectories of
grouped interest points in a frame set of 5 frames. 2× 5 smallest angles of triangles are binned to
obtain a HAT and 3 × 3 trajectory based angles are binned to obtain a HAF following proposed
method described in Section 3.4.

triangle. Thus, one can consider use two largest or two smallest angles. However, two
largest angles can range from 0o to 180o while two smallest angles range only from 0o

to 90o. Hence, we select two smallest angles since binning them is expected to be more
efficient and easier to define histogram bin. Moreover, it can not happen that both of
two smallest angles are larger than 60o. Based on this observation, we set up histogram
bin as follows: for θ > 60o, the histogram bin is of size 30, otherwise, the histogram
bin is of size 15. In this manner, 2 × N smallest angles are binned to 5 bins: [0-15],
[15-30], [30-45], [45-60], [60-90]. Each angle is weighted by sum of magnitude of its
two edges and normalized at the end.

A Histogram of Angles of Flows (HAF). To exploit trajectories of interest points
for modelling the action, some work straightly employ them as descriptors [2]. How-
ever, this approach suffers from the problem that trajectories may vary largely due to the
velocity of the actor. To reduce the effect of variety of velocity, we propose to extract
features based on angles shaped by trajectories. These angles are supposed to be more
informative than trajectories themselves(See Fig3). The angles are binned by the same
method as shown in Equ. 7. Number of histogram bin for HAF is denoted as Ba.

Finally all above descriptors are concatenated to form our ST feature which has 96
(PSURF) + Bo (HOOF) + 4 (HDF) + N (AT) + 5 (HAT) + Ba (HAF) = 105+Bo+N+Ba

dimension. In our experiment, we set N = 5, Bo = 6 and Ba = 4, thus we obtain a
120-dimension ST descriptor.

5 Experiments and Results

We made experiments on large-scale benchmark datasets for three large-scale action
recognition datasets including UCF-50 1, HMDB51 [21] and UCF-101 2 to validate

1 http://crcv.ucf.edu/data/UCF50.php
2 http://crcv.ucf.edu/data/UCF101.php
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Fig. 3. An example that illustrates the effect of variety in velocity on action recognition and the
efficiency of our proposed method. We show trajectories of points which belong to two actors
performing the same action in 6 consecutive frames. We assume that the actors move in similar
way but at different speed. As shown here, Trajectory 1 which corresponds to faster actor and
Trajectory 2 which belongs to lower actor only match at first, thus trajectory based descriptors
become nearly totally different. On the other hand, according to our method, exploiting angles
shaped by trajectories help to find out more the similarity between these two trajectories. The
similar angles (marked by same color) can be binned to the same bin, hence this angle based
descriptor can be expected to reduce the effect of diversity in velocity.

our proposed method. These datasets are not only large-scale but also challenging
benchmarks for human action recognition in realistic and challenging settings such as
large variations in camera motion, object appearance and pose, viewpoint and compli-
cated background. The above three datasets consists of Web video clips collected from
YouTube manually. Each of them has 50, 51 and 101 action categories, respectively.

To validate the enhancement of proposed feature over the baseline, we conduct ex-
periments with ST feature proposed by the baseline and our proposed feature. We use
Fisher Vector encoding as described in [14] to represent videos. We train multi-class
SVMs [22] to perform multi-class action classification. For comparison, we made ex-
periments with our proposed features coded by the conventional bag-of-visual-words
(BoV) as well as the proposed features coded by Fisher Vector (FV).

UCF50 As evaluation criteria for UCF50, we follow method as suggested by the au-
thor [23], that is “Leave One Group Out Cross Validation” which will lead to 25 cross-
validations. The videos belonging to the same group are kept being separated in training
and testing, since the videos in a group are obtained from single long video, sharing
videos from same group in training and testing sets would give high performance. We
compared our proposed methods with other state-of-the-arts [24,25,?,23]. The results
are shown in Fig.5.

Our proposed methods was ranked in the second in this ranking. The top result
was [23]. Note that [23] fused several kinds of features, while we used only one kinds
of the proposed ST feature and it it possible to fuse other kinds of features to boost
performance.
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Table 1. Experimental results on UCF-50.

Method Average Precision (AP)
HOG/HOF [24] 47.9 %

Our (BoV) 51.1%
Action Bank [25] 57.9 %

Motion Interchange [26] 68.51 %
Our (Fisher) 71.6%

Reddy and Shah [23] 76.9%

HMDB51 As for HMDB51, we use three distinct training and testing splits generated
by its authors. For each action category, a set of 70 training and 30 testing clips was
selected so that they fulfill the 70/30 balance for each meta tag, and clips from the same
video were not used for both training and testing. HMDB is more diverse and difficult
dataset than UCF-50 and UCF-101. As shown in Fig.2, the state-of-the-art are still less
than 30%, while the top result exceeded 70% for UCF-50. As results, our proposed
methods outperformed other state-of-the-arts.

Table 2. Experimental results on HMDB-51.

Method Average Precision (AP)
Our (BoV) 17.3%

HOG/HOF [24] 20.44 %
Action Bank [25] 26.9 %

Motion Interchange [26] 29.17%
Our (Fisher) 29.5%

UCF101 We follow evaluation set up as suggested in the action workshop page 3. We
adopt the provided three standard train/test splits to evaluate our results. In each split,
clips from 7 of the 25 groups are used as test samples, and the rest for training. The
result of each experiment reported here is calculated as the mean of average accuracies
over the three provided test splits. We compare our results to the result reported in [27].

According to [27], their result is provided by baseline approach of action recogni-
tion [27] using standard BoV. The results are shown in Table 1. Note that [27] follows
the old experimental set up, that is “Leave One Group Out Cross Validation”.

Although UCF101 is the largest action dataset up to date, there are too few reported
results for it. As demonstrated in [13], their method of extracting ST features is com-
parable to state-of-the-arts. By applying Fisher Vector encoding, their method obtains
slightly better results. We propose to improve their method and significantly boost the
overall precision as shown in Table 1. The results demonstrate that, our method could
select more representative points as well as explore better the visual characteristics of
them.

3 http://crcv.ucf.edu/ICCV13-Action-Workshop/
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Table 3. Experimental results on UCF-101.

Method Average Precision (AP)
[13] (Fisher) 38.2%
Our (BoV) 40.1%
[27] (BoV) 44.5%
Our (Fisher) 60.1%

6 Conclusions

In this paper, we propose a novel method of extracting spatio-temporal features which
is able to efficiently select interest points and descriptorize their features. The proposed
methods consists of dense-sampling of SURF and Delaunay triangulation of selected
interest points, the idea of which is based on our previous work [13].

The experimental results show significant improvement of our method over the
baseline regarding the three up-to-date large-scale action recognition datasets: UCF-
50, HMDB51, and UCF-101. In future work, we will introduce detailed analysis on
human-object interaction for action recognition, and recent approach of compensating
camera motion in order to handle more complicated cases such as zooming.
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