

Summarization of Egocentric Moving Videos for Generating Walking Route Guidance

Masaya Okamoto and Keiji Yanai Department of Informatics, The University of Electo-Communications, Tokyo, Japan

The University of Electro-Communications

Background

Spread of wearable camera
 – Easy to take egocentric video

New application of egocentric videos

Automatic generation of route guidance video

© 2013 UEC Tokyo.

UEC The University of Electro-Communications

Objective

Generate walking route guidance by summarizing egocentric moving videos

UEC The University of Electro-Communications

Demo (Raw Video)

UF The University of Electro-Communications

Demo (Result Video)

Related Work: Summarization egocentric video

- Tancharoen et al. [ACM SIGMM 2005]
 - Cues: GPS and other sensors
 - Target: Life-log video (everyday life)
 - Output: Set of important frames
- Lee et al. [CVPR 2012]
 - Cues: Visual features
 - Target & Output: same as the above
- Ours
 - Cues: Visual information
 - Target: Walking video
 - Output: Summarized video

1. Ego-motion Classification

- Classify video sections into four classes
 - 1 Moving forward
 - ② Stopping
 - ③ Turning right
 - ④ Turning left

Video section is four seconds long

1. Ego-motion Classification

- Extract 48 frames from one video section
- Calculate a feature vector
 - ① Compute optical flows for 47 intervals
 - 2 Build 18-bin directional histograms for 4x4 grids
 - ③ Normalize them within a video section

1. Ego-motion Classification

- Train 4 SVM classifiers in one-vs-all
 Prepare hand-labeled training data
- Use pseudo-probability values
 To estimate section importance

2. Crosswalk Detection

Crosswalk is important and remarkable cue

- Extract three frames every second
- Estimate ground regions
 - Use Geometric context (Hoiem et al. [IJCV Vol.75 2007])

2. Crosswalk Detection

• Extract SIFT feature from ground regions

- Make BoF vector with extracted SIFT
- Use non-linear SVM as classifier
 - about 240 learning frames

3. Estimation of Importance

Expression of estimation importance

$$S_i = c_f v_{f[i]} + c_s v_{s[i]} + c_r v_{r[i]} + c_l v_{l[i]}$$

Weighting factors

Go	Stop	Turning	Turning
forward		right	left
$c_{f} = -2$	$c_{s} = 1$	$c_r = 2$	$c_{l} = 2$

3. Estimation of Importance

• Normalize importance

Regard crosswalk section

 Total output is over pre-defined threshold

Add bias to crosswalk section

$$S''_i = \min(S'_i + 0.5, 1.0)$$

4. Calculation of Playing Speed

Calculation play speed from importance

$$sp[i] = \frac{1}{S''_i \left(1 - \left(\frac{1}{(sp_{max})}\right) + \frac{1}{1 + 1}\right)} + 1$$

- sp_{max} is given by user when playing
 User can adjust max playing speed on-line
- Smoothing playing speed (for easy watching) sp'[i] = 0.1(sp[i-1] + sp[i+1]) + 0.8 sp[i]

Viewing System

- Implemented view system in HTML5
 - Be embed classifier outputs and numbers of detection of each video section

Experiments

- Dataset
 - Taken at around our university (Tokyo)
 - 9 Videos (average 9min long)
- Evaluation experiments
 - Ego-motion classification
 - Crosswalk Detection
- User study

- Vote best summarization method by users

UEC The University of Electro-Communications

Evaluation of Ego-motion Classification

Evaluation of Crosswalk Detection

- Experiment Setup
 - 250 learning frames from four videos
 - -200 testing frames from five videos

Compare w/ and w/o ground estimation
 – To evaluate the ground region estimation

UEC The University of Electro-Communications

Evaluation of Crosswalk Detection

	Recall	Precision	f-number
W/ ground estimation	0.37	0.787	0.503
W/O ground estimation	0.26	0.839	0.397

Improvement of F-number 0.106

User Study Setup

Comparing methods as follows:

- ① Proposed (Ego-motion + Crosswalk)
- 2 Ego-motion classification only
- ③ Fast-forwarding at a uniform speed
- ④ Storyboard-style

Ask 10 subjects to evaluate the results for three videos by above

User Study Result

Most of the subjects voted to proposed method

Video	Ego– motion	Ego. + crosswalk	Fast- forwarding	Storyboard
Video A	4	6	0	0
Video B	3	6	1	0
Video C	1	7	1	1
Total	8	19	2	1

Conclusion

- Summarization of egocentric moving videos for generating route guide videos
- Experiment result
 - Achieve 83.8% in ego-motion classification
 - Ground estimation improve crosswalk detection
- User study
 - Most subject voted proposed method

Future Works

• Extending target videos

- Focused on only walking videos now
- Bike and car egocentric videos
- Adding important objects

 Use other object cues for deferent situation

Contacts

- Masaya Okamoto
- e-mail: okamoto-m@mm.inf.uec.ac.jp

Gracias!

VS Google Street Views

- Taken from high view point
- Limited to large cities

Street Views

Expression of Playing Speed

Calculation play speed from importance

$$sp[i] = \frac{1}{S''_i \left(1 - \left(\frac{1}{(sp_{max})}\right) + \frac{1}{1/(sp_{max} - 1)}\right)} + 1$$

s_{max} is given by user when playing
 User can adjust max playing speed on-line

Target Video

We assume our target videos are

- Walking video recorded from a starting place to a destination
- 2 Recorded by a moving wearable camera
- ③ Recorded continuously (not interrupted)

Optical Flows from Moving Object

• Optical flows from moving object (ex. Car) cause failure of ego-motion classification

Calculation of Optical

We use improved LK module in OpenCV

• For high accuracy

Detail Setup of User study

- Use 3 videos for User study
- Taken by me at residential area Tokyo

Video	Duration	After duration	Average speed	Storyboard size
Video A	7:47	1:45	4.5	21
Video B	9:17	2:20	3.9	28
Video C	11:26	2:40	4.3	32

Learning of weight factors

• Decided by preliminary experiments

- We will decide several parameters from training data
 - Need supervised signals in each video section

Why not a multi-class classifier

Some section contains complex motion
 – Two motions in one section, looking aside

 One-vs-all classifiers can represent complex motion

Evaluation of Crosswalk Detection

Recall-precision curves

©Recall-Rrecision Curve of Crosswalk detection

2. Crosswalk Detection

• Extract SIFT feature from ground regions

- Make BoF vector with extracted SIFT
- Use non-linear SVM as classifier
 - about 240 learning frames

Our dataset

- Collected videos contain somebody faces and car numbers
- It's difficult to distribute