Recognition of Multiple-Food Images by Detecting Candidate Regions

Yuji Matsuda, Hajime Hoashi, and Keiji Yanai The University of Electro-Communications, Tokyo JAPAN

Background

- Recording of food habits has become popular.
- Users can become aware of own diet, and evaluate nutrition.
- To record food items in every meal is a quite troublesome task.
- It is desired to make recording of food items more easier and quickly.

Objective

- Recognition of "multiple food images"
- Contain two or more food items

Related Work

- [S. Yang et al. CVPR 2010]
- specialized for American fast food
- defined 8 basic food materials
- classify 61 food categories using detected materials and their relative position
- [Z. Zong et al. ISM 2010]
- the same fast food dataset
- SIFT detector + LBP

Related Work

- Our previous work [Hoashi et al. ISM 2010]
- 85 kinds of food categories
- fusing various kinds of image features using MKL

Existing methods

Proposed method

- Recognize only single food-item in one image.
- Recognize multiple fooditems in one image at the same time.

Recognition Flow

Input image

Candidate Region Detection

Whole DPM Circle JSEG

Coding Image Feature Vector Color SIFT CSIFT HoG Gabor

Classification

Output results

1. rice
2. miso soup
3. egg sunny-side up
4. sirloin cutlet
5. salmon meuniere
6. fried fish
7. boiled fish
8. sausage
9. sandwiches
10. roll bread

Candidate Region Detection

- Whole image
- Sliding window search
- Circle detector
- Region segmentation

Whole Image

- Advantage: suitable for larger dish
- Disadvantage: unsuitable for small dish

Sliding Window Search (Deformable Part Model)

- Advantage: can obtain region with a high evaluation value
- Disadvantage: is based on only gradientbased features \# region is 100 in total

P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan, Object detection with discriminatively trained part-based models, PAMI 2010

Circle Detector

- Advantage: can detect food by circular plate
- Disadvantage: dishes are not always circular \# region is 4 on average

Region Segmentation (JSEG)

- Advantage: detect dishes by segmentation
- Disadvantage: does not always success \# region is 10

Y. Deng and B. S. Manjunath: Unsupervised segmentation of color texture regions in images and video, PAMI 2001

Region Segmentation (cont.)

- One food item is sometimes divided into several regions.
- combine regions based on circularity

$$
\text { Circularity }=\frac{4 \pi(\text { Area })}{(\text { perimeter })^{2}}
$$

\# combined region is 4 on average

Irrelevant Region Removal

- Irrelevant region:
- less than 60 pixels (shorter side)
- apart from the average aspect ratio

Classification

- Image Features:
- Color histogram
- SIFT, CSIFT (Spatial-pyramid bag-of-features)
- Frequency of the pattern of local patch
- HOG
- Rough shape of the object
- Gabor
- texture patterns

Classification

- Classifier:
- Multiple Kernel Learning (MKL-SVM)
- 1 -vs-rest

$$
K_{M K L}\left(x, x^{\prime}\right)=\sum_{j=1}^{K} \beta_{j} K_{j}\left(x, x^{\prime}\right)
$$

- Results:
- A list of top N food categories

Experiments

- Dataset:
- includes 100 kinds of food categories
- has about 100 images for each category
- For test:
- 500 multiple food-item images (contain 1200 items)

100 food category database

Experiments

- Performance:

Classification Rate
$=\frac{\# \text { of correctly detected food items in Top } N}{\# \text { of all the food items }}$

- Comparison:

1. Proposed Method
2. Only single detector (includes previous method)
3. Ground truth bounding-box region

Multiple Food-Item Images

\rightarrow Proposed \uparrow Whole \pm Circle $*$ JSEG *DPM - GTBB

әןеч पо!ŋео!!!sse|o

Conclusions

- Proposed two-step food recognition method 1. candidate region detection

2. classification for candidate region

- Achieved 55.8\% classification rate (top 10)
- improved by 40.4 points
- Future Work:
- introduce co-occurrence probability
- estimate calories

Thank you! Questions?

DPM only vs. DPM+MKL (multiple food-item images)

Processing Time

- Total processing time is about 2 minutes.
- Candidate Region Detection : about 15 sec
- Feature encoding : about 90 sec
- Classification : about 20 sec

Easy categories

grilled salmon (100\%) sausage (100\%) rice (92.3\%)

miso soup (89.2\%) hamburger (86.7\%) toast (85\%)

Difficult categories

macaroni salad (0\%)

omelet (10\%)
pork miso soup
(6.3\%)

Hamburg steak
(11.1\%)

Chinese soup (6.7\%)

jiaozi (11.1\%)

French fries (10\%)

udon noodle (11.1\%)

