

Recognition of Multiple-Food Images by Detecting Candidate Regions

Yuji Matsuda, Hajime Hoashi, and Keiji Yanai The University of Electro-Communications, Tokyo JAPAN

The University of Electro-Communications

Background

- Recording of food habits has become popular.
 - Users can become aware of own diet, and evaluate nutrition.
- To record food items in every meal is a quite troublesome task.

• It is desired to make recording of food items more easier and quickly.

Objective

Recognition of "multiple food images"
 – Contain two or more food items

food image

Related Work

- [S. Yang et al. CVPR 2010]
 - specialized for American fast food
 - defined 8 basic food materials

- classify 61 food categories using
 detected materials and their relative position
- [Z. Zong et al. ISM 2010]
 - the same fast food dataset
 - SIFT detector + LBP

Related Work

- Our previous work [Hoashi et al. ISM 2010]
 - 85 kinds of food categories
 - fusing various kinds of image features using MKL

Existing methods

 Recognize only single food-item in one image.

Proposed method

Recognize
 multiple food items in one image
 at the same time.

Recognition Flow

1. rice

- 2. miso soup
- 3. egg sunny-side up
- 4. sirloin cutlet
- 5. salmon meuniere
- 6. fried fish
- 7. boiled fish
- 8. sausage
- 9. sandwiches
- 10. roll bread

Candidate Region Detection

- Whole image
- Sliding window search
- Circle detector
- Region segmentation

Whole Image

- Advantage: suitable for larger dish
- Disadvantage: unsuitable for small dish

Sliding Window Search (Deformable Part Model)

- Advantage: can obtain region with a high evaluation value
- Disadvantage: is based on only gradientbased features

region is 100 in total

P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan, Object detection with discriminatively trained part-based models, PAMI 2010

Circle Detector

- Advantage: can detect food by circular plate
- Disadvantage: dishes are not always circular
 # region is 4 on average

Region Segmentation (JSEG)

- Advantage: detect dishes by segmentation
- Disadvantage: does not always success

region is 10

Y. Deng and B. S. Manjunath: Unsupervised segmentation of color texture regions in images and video, PAMI 2001

Region Segmentation (cont.)

- One food item is sometimes divided into several regions.
 - combine regions based on *circularity*

$$Circularity = \frac{4\pi (Area)}{(\text{perimeter})^2}$$

combined region is 4 on average

Irrelevant Region Removal

- Irrelevant region:
 - less than 60 pixels (shorter side)
 - apart from the average aspect ratio

Classification

- Image Features:
 - Color histogram
 - SIFT, CSIFT (Spatial-pyramid bag-of-features)
 - Frequency of the pattern of local patch
 - HOG
 - Rough shape of the object
 - Gabor
 - texture patterns

Classification

- Classifier:
 - Multiple Kernel Learning (MKL-SVM)
 - 1-vs-rest

$$K_{MKL}(x,x') = \sum_{j=1}^{K} \beta_j K_j(x,x')$$

• Results:

- A list of top N food categories

Experiments

- Dataset:
 - includes 100 kinds of food categories
 - has about 100 images for each category
- For test:

- 500 multiple food-item images (contain 1200 items)

100 food category database

Experiments

• Performance:

 $Classification Rate = \frac{\# of correctly detected food items in Top N}{\# of all the food items}$

of all the food items

- Comparison:
 - 1. Proposed Method
 - 2. Only single detector (includes previous method)
 - 3. Ground truth bounding-box region

Multiple Food-Item Images

Conclusions

- Proposed two-step food recognition method
 - 1. candidate region detection
 - 2. classification for candidate region
- Achieved 55.8% classification rate (top 10)
 improved by 40.4 points
- Future Work:
 - introduce co-occurrence probability
 - estimate calories

Thank you ! Questions?

DPM only vs. DPM+MKL (multiple food-item images)

Processing Time

- Total processing time is about 2 minutes.
 - Candidate Region Detection : about 15 sec
 - Feature encoding : about 90 sec
 - Classification : about 20 sec

Easy categories

grilled salmon (100%) sausage (100%)

rice (92.3%)

egg sunny-side up (91.7%)

miso soup (89.2%) hamburger (86.7%) toast (85%) sa

sandwiches (81.8%)

Difficult categories

macaroni salad (0%)

pork miso soup (6.3%)

Chinese soup (6.7%)

French fries (10%)

omelet (10%)

Hamburg steak (11.1%)

jiaozi (11.1%)

udon noodle (11.1%)

