
A Fast Image-Gathering System on the
World-Wide Web Using a PC Cluster

Keiji Yanai, Masaya Shindo and Kohei Noshita

Department of Computer Science, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, JAPAN

E-mail: {yanai,shindo-m,noshita}@igo.cs.uec.ac.jp

Abstract. Thanks to the recent explosive progress of WWW (World-
Wide Web), we can easily access a large number of images from WWW.
There are, however, no established methods to make use of WWW as
a large image database. In this paper, we describe an automatic image-
gathering system from WWW, in which we use both keywords and image
features. By exploiting some existing keyword-based search engines and
selecting images by their image features, our system obtains, with high
accuracy, images that are strongly related to query keywords. This sys-
tem has been implemented on a parallel PC cluster, which enables us to
gather more than one hundred images from WWW in about one minute.

1 Introduction

Thanks to the recent explosive progress of WWW (World-Wide Web), we can
easily access a large number of images from WWW. Hence, we can regard WWW
as a huge image database. However, most of those images on WWW are not
classified with appropriate keywords.

We can use commercial search engines for searching WWW for HTML doc-
uments by giving them related keywords. In a similar way, we can also use some
image-search engines for searching WWW for images related to keywords. Most
of image-search engines, however, search for images by using only keywords in
HTML documents including images, without analyzing the contents of those im-
ages. As a result, they tend to return images that are not appropriate images to
the given keywords.

As a method of image-searching, content-based image retrieval (CBIR) has
been investigated [1, 2]. The conventional keyword-based image search methods
require appropriate keywords, attached to all images in a database, which have
to be made by hand in advance, whereas CBIR does not require such keywords.
In CBIR, some types of similarity between images are computed using image
features extracted from images. Thus, we can search for images similar to query
images.

For constructing an image-search system on WWW based not only on key-
words but also on the contents of images, in this paper, we propose an automatic
image-gathering system on WWW, into which we have integrated a keyword-
based search method and a CBIR method. In our system, a user gives query
keywords to the system at the beginning of a search, and obtains output images
related to the keywords. We have implemented the system on a PC cluster as



all images on WWW clusters consisting of similar images

images related
to the keywords

images of
large clusters

adding images that are similiar
to images of large clusters

output images

images strongly related
to the keywords 

Fig. 1. Processing flow of image-gathering.

a parallel system for achieving fast image-gathering, which enables us to gather
more than one hundred images from WWW in about one minute. In this paper,
we describe our method of gathering images from WWW, an implementation of
the system and results of experiments.

2 Our Method of Image-Gathering

The final goal of our image-gathering system is to gather images on WWW
related to the query keywords given by a user as input. Note that our system is
not called an image “search” system but an image “gathering” system, since our
system has the following properties: (1) it does not search for images over the
whole WWW directly, (2) it does not make a database in advance, and (3) it
makes use of search results obtained by commercial keyword-based text-search
engines.

Figure 1 shows the processing flow. Since an image on WWW is usually
embedded in an HTML document that explains it, the system exploits some
existing commercial keyword-based WWW search engines, and it gathers URLs
(Universal Resource Locator) of HTML documents related to query keywords. In
the next step, using those gathered URLs, the system fetches HTML documents
from WWW, analyzes them, and evaluates the extent of relation between the
keywords and images embedded in HTML documents. If it is judged that images
are related to keywords, the image files are fetched from WWW. According to
the extent of relation to the keywords, we divide fetched images into two groups:
images in group A having stronger relation to the keywords, and others in group
B. For all gathered images, image features are computed.

In CBIR, a user has to provide query images to the system, because it searches
for images based on the similarity of image features between query images and
images in an image database. In our system, instead of providing query images, a
user only needs to provide query keywords to the system. Then, we select images
strongly related to the keywords as group A images, remove noise images from
them, and regard them as query images only by examining keywords. Removing
noise images is carried out by eliminating images which belong to relatively
small clusters in the result of image-feature-based clustering for group A images.
Images which are not eliminated are regarded as appropriate images to the query



keywords, and we store them as output images. Our preference of larger clusters
to smaller ones is based on the following heuristic observation: an image that
has many similar images is usually more suitable to an image represented by
keywords than one that has only a few similar images. Next, we select images
that are similar to the query images from group B in the same way as CBIR,
and add them to output images.

Some WWW image search systems such as WebSeer[3], WebSEEk[4] and
Image Rover[5] have been reported so far, which can be regarded as an integra-
tion of keyword-based search and content-based image retrieval. These systems
search for images based on the query keywords, and then a user selects query
images from search results. After this selection by the user, the systems search
for images that are similar to the query images based on image features. These
three systems carry out their search in an interactive manner. Our system is
different from those in that our system only needs one-time input of query key-
words. Our system is able to gather a large number of various images related
to the keywords, since it is unnecessary for a user to indicate query images
during the processing, and the whole processing is executed automatically. The
three systems quoted above require gathering images over WWW in advance
and making large indices of images on WWW. In contrast to those systems, due
to exploiting existing keyword-based search engines, our system does not require
making a large index in advance.

3 Collection and Selection

The image-gathering process in our system consists of a collection part and a
selection part.

3.1 Collection Part

In the collection part, by means of some commercial keyword-based WWW
search engines, the system obtains URLs, and then, by using those URLs, it
gathers images from WWW. The algorithm is as follows:

1. A user provides the system with query keywords.
2. The system sends queries to commercial keyword-based search engines, and

obtains URLs of HTML documents related to the keywords.
3. The system fetches HTML documents indicated by the URLs from WWW.
4. The system analyzes HTML documents, and extracts URLs of images embed-

ded in the HTML documents with image-embedding-tags (“IMG SRC” and
“A HREF”). For each of those images, the system calculates a score which rep-
resents the intensity of relation between the image and the query keywords.
The score is calculated by checking the following conditions:

Condition 1: Each time one of the following conditions is satisfied, 3 points
are added to the score.
– In case the image is embedded by “SRC IMG” tag, “ALT” field of “SRC

IMG” includes the keywords.
– In case the image is linked by “A HREF” tag directly, words between “A

HREF” and “/A” include the keywords.



– The name of the image file includes the keywords.
Condition 2: Each time one of the following conditions is satisfied, 1 point
is added to the score.
– “TITLE” tag includes the keywords.
– “H1, ..,H6” tags include the keywords, if these tags are located just

before the image-embedding-tag.
– “TD” tag including the image-embedding-tag includes the keywords.
– Ten words just before the image-embedding-tag or ten words after it

include the keywords.

If the final score of an image is higher than 3, the image is classified into
group A. If it is higher than 1, the image is classified into group B. The
system fetches only image-files whose image belongs to either group A or B.
If the size of a fetched image-file is larger than a certain predetermined size,
the image is sent to the selection part.

5. In case the HTML document does not include image-embedding-tags at all,
the system fetches and analyzes other HTML documents linked from it in
the same manner described above, provided that it includes a link tag (“A
HREF”) which indicates URL of HTML documents on the same web site.

3.2 Selection Part

In the selection part, the system selects appropriate images for the query key-
words out of images which are collected in the collection part. The selection is
based on the image features as described below.

1. In the first step, for each of the collected images, the system makes a color
histogram as image features [6]. Rather than making a color histogram di-
rectly for the RGB color space, we make it for the Lu∗v∗ color space into
which the RGB color space is converted. The reason for this is that the Lu∗v∗
color space is known to represent the human color sense better than the RGB
color space [7]. We quantize the Lu∗v∗ color space into 216 (6 for each axis)
bins, and make a color distribution histogram for each image. In the current
implementation, we use these simple image features, although we can use
other sophisticated image features proposed in many CBIR researches.

2. For each pair of images in group A, the distance which represents the degree
of dissimilarity between the two images is calculated based on their image
features. In the calculation of the distance, we do not adopt the Euclid dis-
tance but the distance which considers the proximity in the color space [8].

3. Based on the distance between images, images in group A are clustered by the
cluster analysis method. Since we intend to make clusters so that images in
the same one are similar to each other, we adopt the farthest neighbor method
(FN): we define the distance between clusters as the largest distance between
two images belonging to mutually different clusters. In the beginning, each
cluster has only one image. For each pair of clusters, if the distance between
them is smaller than a certain threshold, they are merged into the same
cluster. The system repeats merging clusters, until all distances between
clusters are more than the threshold.



4. The system throws away small clusters which have fewer images than a cer-
tain threshold value. It stores all images in the remaining clusters as output
images.

5. The system selects images in group B if they have a small distance from
images in the remaining clusters of group A, and adds them to output images.

4 Implementation

In our system, unlike the conventional image search systems for WWW, we do
not make any index of images in advance, and we gather images from WWW on
demand.

Because of this, the image-gathering process takes much longer time than
that of the conventional systems. In order to speed up the whole process, we
implement our system on a PC cluster, by which we achieve not only paral-
lel processing within the collection part but also concurrent processing of the
collection and selection parts.

Parallel processing within the collection part means that the system generates
many collection processes on multiple PCs, and they gather images from WWW
in parallel.

Concurrent processing of the collection and selection parts means that, before
all the constituent processes of the collection part terminate, some processes in
the selection part start. In the collection part, the process terminates when a
collection process has collected all HTML documents and image files indicated
by URLs. This implies that the load of the system gradually decreases, since the
number of active collection processes decreases as time progresses. When the
system starts access to HTML documents of all URLs obtained from text-based
search engines, without waiting for the completion of fetching all the images, we
can start to extract image features from images which have been already fetched
and also compute distances between images in group A (Figure 2).

analysiscollection

time progress

C
P

U
 lo

ad

termination of
distributing URL

termination of
image collection

Fig. 2. Concurrent processing of the collection part and the analysis part.

The system consists of a master PC and some slave PCs as shown in Figure 3.
The master PC issues search requests to keyword-based WWW search engines,
manages URLs of HTML documents related to the keywords returned from the
search engines, and select images from group A and B sent from slave PCs based
on their images features.



ICPICP

user

 slave PC 

 master PC 

image selector

URL manager

MP

IAP

ICPICP

 slave PC 

MP

IAP

MP

IAP

ICPICP

 main slave PC 

WWW
search
engines

image

keywords

result images

URL

keywords

URL

URLURLURL

imageimage

image feature

image feature,
distance

WWW

image feature,
distance

image feature

Fig. 3. Parallel image-gathering system.

Each slave PC has one management process(MP), some image collection
processes(ICP) and one image analysis process(IAP).

An MP receives URLs from the master PC, and distributes them to ICPs
in the same slave PC. Each ICP fetches HTML documents indicated by URLs
handed by the MP, extracts URLs of image files, and evaluates the intensity of
relation between images and query keywords. It fetches highly evaluated images
from WWW, and transfers them to an IAP in the same slave PC.

An IAP receives images from ICPs, and extracts image features from the
images. Every time it receives a new image in group A, it computes distance
between the new one and ones received before. In addition, for computing dis-
tances between images in different slave PCs, the system chooses a particular
slave PC all of whose ICPs have been done before any other slave PC, and makes
this PC receive all the images features from other slave PCs. This slave PC is
called the main slave PC. The IAP in the main slave PC computes all distances
between images which have been gathered by different slaves. After all ICPs
terminate, the IAP sends image features and computed distance to the master
PC. No images themselves are sent to the master PC so as to reduce the data
volume to be sent.

5 Experimental Results

We have implemented the system on a Linux-based PC cluster, which consists
of one master PC and eight slave PCs. Their CPUs are Intel Celeron 400Mhz,
450Mhz or 500Mhz, and their memory size is 256MB.



Table 1. Experimental results.

query num. of images in group A images in group B total (A+B)
keywords URLs collected selected collected selected collected selected

lion 1363 (10) 72 (84) 62 (93,95) 216 (26) 66 (42,49) 288 (41,86) 128 (67,73)
apple 1418 (24) 97 (86) 76 (95,87) 237 (50) 99 (72,60) 334 (61,58) 175 (82,71)
baby 1746 (39) 85 (48) 73 (53,95) 528 (74) 272 (83,58) 613 (70,64) 345 (77,62)
desk 1280 (37) 76 (90) 72 (92,97) 212 (50) 84 (71,56) 288 (61,37) 156 (81,72)

keyboard 1521 (18) 39 (95) 38 (95,97) 167 (60) 58 (73,43) 206 (66,49) 96 (82,57)
tiger 1871 (6) 57 (71) 51 (75,95) 178 (33) 71 (42,50) 235 (42,96) 122 (56,69)

Nomo† 951 (5) 38 (95) 34 (97,92) 28 (25) 14 (36,72) 66 (65,100) 48 (79,88)
Mt.Fuji 3165 (28) 541 (71) 317 (91,75) 837 (42) 158 (66,30) 1378 (53,84) 475 (82,53)

†. name of a major league baseball player.

5.1 Evaluation of Gathered Images

We show experimental results for eight keywords in Table 1, which describes
the number of image URLs extracted from all HTML documents, the number
of images collected from WWW, and the number of selected images. Numerical
values in () represent the precision and the recall of the image URLs, the collected
or selected images.

In the collection part, we used five major Japanese search engines, Goo, In-
foseek Japan, Lycos Japan, Ocn Navi, and Excite Japan to obtain URLs related
to the keywords, and merged the search results of five engines by omitting dupli-
cations. For each keyword, we obtained about 2000 URLs of HTML documents
in about ten seconds. We fetched and analyzed HTML documents, and we ob-
tained several hundreds of images from WWW. Fetched images were divided
into two groups, A and B, by analyzing HTML documents as shown in Table 1.

In the selection part, we selected images from group A by the image-feature-
based clustering and removing small clusters which have fewer images than 5
percent of the number of images collected in group A, and selected images from
group B by CBIR. We judged selected images either as OK or NG by the subjec-
tive evaluation. OK means that the image exactly corresponds to the keywords,
and NG means that it does not. In Table 1 we describe the precision, which
is defined to be NOK/(NOK + NNG), and the recall, which is defined to be
NOKsel

/NOKcol
, where NOK , NNG, NOKsel

, and NOKcol
are the number of OK

images, the number of NG images, the number of OK images in selected images,
and the number of OK images in collected images, respectively. The recall only
for the collected images is defined to be NOKcol

/NOKURL , where NOKURL is the
number of OK images in image URLs extracted from all HTML documents, and
it is relatively high for most of the keywords. For the five keywords in the table,
both the precision and the recall of images selected from group A are over 87%.
This shows that most of high-scored images at the keyword-based evaluation are
correct. The precision of images selected from group B is between 36% and 83%.
It is superior to the precision of images collected as group B in all experiments.

As the final output of each experiment, we obtained output images the num-
ber of which was about half of the number of collected images, and the precision



is improved much compared to the precision of collected images, which are col-
lected by only evaluation of the keywords. Especially, for targets whose color is
essential to discriminate their images, for example, “apple” and “lion”, we ob-
tained better improvement. Both the precision and the recall of most of output
images are about 70%, which implies that our method is effective for image-
gathering from WWW.

Since Mt.Fuji is the most popular mountain in Japan, there are many images
of Mt.Fuji in Japanese web sites. There are relatively fewer images of “Nomo”
than images related to other keywords, since “Nomo” is a person’s name. How-
ever, because most of “Nomo” images are fetched from sports news web sites
and appropriate keywords are always attached to their ALT tags, their recall
becomes very high.

5.2 Comparison of Execution Time

In Table 2, we compare the execution time in terms of the execution type. It
shows the execution time in case of the sequential execution of the collection part
and the analysis part, and as well as in case of the concurrent execution of them
with zero slave PCs and six slave PCs. Note that zero slave PCs means that one
PC plays both roles of a master PC and a slave PC at the same time. In this
experiment, we used “lion” as a query keyword and carried out image-gathering
using 1145 URLs fetched from search engines.

In the parallel execution with zero slave PCs, the speed-up is 1.11 times
compared to the sequential execution with zero slave PCs. The more the number
of slave PCs increases, the greater speed-up is obtained. In the experiment with
six slave PCs, the minimum execution time is 65 seconds, and the speed-up is
3.63 times compared to the sequential execution time with zero slave PCs. This
shows that the parallel implementation on a PC cluster is effective.

Table 2. Comparison of the processing times in the sequential execution and in the
concurrent execution.

the number execution execution time (seconds)
of slaves form (collection/analysis) speed-up

0 sequential 236(192/44) —–
0 concurrent 213 1.11
6 sequential 107(63/44) 2.21
6 concurrent 65 3.63

Figure 4 shows the execution time, where the number of slave PCs varies
from one to eight. As the number of slave PCs increases, the execution time has
become shorter.

In order to evaluate the variation of the execution time according to the
number of slave PCs, we define time overhead TO [9] that represents an overhead
of the execution time in the experiment compared to the ideal execution time
Tideal by n slave PCs. It is defined as follows:



50

100

150

200

0
1 2 3 4 5 6 7 8

the number of slave PCs
ex

ec
ut

io
n 

tim
e 

(s
ec

on
ds

)

Fig. 4. Execution time according to the number of slave PCs.

TO =
Tn

Tideal
− 1 (1)

where Tn is the execution time by n slave PCs. If all PCs have the same CPU
speed, Tideal is T1/n. Since the CPU speed of PCs used in this experiments are
different, we define Tideal as the harmonic mean of the execution time T k

1 on the
k-th PC as follows:

Tideal =
1

1
T 1

1

+
1

T 2
1

+ · · · + 1
T n

1

(2)

Figure 5 shows the time overhead TO, where the number of slave PCs varies
from one to eight. TO is increasing nearly in proportion to the number of PCs.

1 2 3 4 5 6 7 8
-50

0

50

100

150

200

the number of slave PCs 

ov
er

he
ad

 (
%

)

Fig. 5. Time overhead.

Many ICPs tend to be idle during the processing of the collection part, since



the number of URLs assigned for each image collection process(ICP) decreases
as the number of PCs increases.

In this experiment, the fastest execution was achieved by six slave PCs.
Even if we add more slave PCs, practically no more speed-up will be achieved,
and the time overhead will further increase. This is due to the increase of idle
processes, the increase of communication, and the limitation of bandwidth of
communication lines to the Internet.

6 Conclusions

In this paper, we described design, implementation, and experiments of a fast
automatic image-gathering system from WWW. We have achieved the high pre-
cision and recall that are about 70% without any knowledge about target images
by means of both the keyword-based selection and the image-feature-based selec-
tion. The only input we have to supply to the system is a list of query keywords.
Furthermore, we have achieved fast image-gathering from WWW by implement-
ing the system as a parallel system on a PC cluster.

In the current implementation, we use only a color histogram as an image
feature for image-selecting. For future work, we plan to exploit textures and
edges as image features and integrate word histograms of HTML documents
with image features. Some parameters for thresholds used in the system are
given by hand at present, we plan to decide them by learning.

Acknowledgments
A part of this work was supported by a grant from the Okawa Foundation for
Information and Telecommunications.

References

1. V.N. Gudivada and V.V. Raghavan, “Content-based image retrieval-systems,”
IEEE Computer, vol. 28, no. 9, pp. 18–22, 1995.

2. A. D. Bimbo, Visual Information Retrieval, Morgan Kaufmann, 1999.
3. C. Framkel, M.J. Swain, and V. Athitsos, “Webseer: An image search engine for

the world wide web,” Tech. Rep. TR-96-14, University of Chicago, 1996.
4. J. Smith and S.F. Chang, “Visually searching the web for content,” IEEE Multi-

media, vol. 4, no. 3, pp. 12–20, 1997.
5. S. Sclaroff, M. LaCascia, S. Sethi, and L. Taycher, “Unifying textual and visual

cues for content-based image retrieval on the world wide web,” Computer Vision
and Image Understanding, vol. 75, no. 1/2, pp. 86–98, 1999.

6. M.J. Swain and D.H. Ballard, “Color indexing,” International Journal of Computer
Vision, vol. 7, no. 1, pp. 11–32, November 1991.

7. U. Gargi and R. Kasturi, “An evaluation of color histogram based methods in video
indexing,” in International Workshop on Image Databases and Multimedia Search,
1996, pp. 75–82.

8. J. Hafner, H.S. Sawhney, W. Equitz, M. Flickner, and W. Niblack, “Efficient color
histogram indexing for quadratic form distance functions,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 17, no. 7, pp. 729–736, 1995.

9. T. A. Marsland and F. Popowich, “Parallel game-tree search,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 7, no. 4, pp. 442–452, 1985.


