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SUMMARY

In this paper, we describe a new design of a recogni-
tion system for a single image of an indoor scene including
complex occlusions. In conventional works, the systems
could not recognize images of an indoor scene including
complex occlusions. Our system can treat them by employ-
ing supporting relation between objects. In our system, first,
the system estimates the 3D structure of an object by fitting
a 3D structure model to the image qualitatively. Next, by
checking the supporting relation between objects, it elimi-
nates object candidates that cannot exist and estimates real
objects from their parts in the image. Finally, the system
recognizes objects that are compatible with each other. We
implemented the system as a multi-agent-based image un-
derstanding system. In this paper, we describe the design of
the system and results of experiments. © 2002 Wiley Peri-
odicals, Inc. Syst Comp Jpn, 33(11): 14–26, 2002; Published
online in Wiley InterScience (www.interscience.
wiley.com). DOI 10.1002/scj.10142

Key words: ordinary object recognition; scene un-
derstanding; image understanding system; supporting rela-
tion.

1. Introduction

The objective of our research is to realize a system
that recognizes objects and their spatial relations in a single
image of a real-world scene including complex occlusions.
In our research, “object recognition” means to obtain the
category name of the object, such as “desk” and “chair,”
from an image of a real-world scene. In this paper, we
restrict the recognition target to an indoor scene, and we
propose a new recognition method for treating complex
occlusions.

In a usual indoor scene, various objects are piled up.
For example, there exists a desk on the floor and a book on
the desk (Fig. 1). Therefore, many occlusions occur, and the
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recognition of an indoor image must deal with them. In
many conventional investigations of the recognition of a
scene including occlusions, an exact shape model of a target
object is used to recognize a single object. They fit the
model to partial features and estimate the total appearance
of the target object. In such a way, these approaches are
effective for recognition of objects that have constant
shapes such as industrial parts. For real-world scenes, how-
ever, it is impossible to prepare exact 3D models of the
target objects in advance, since objects represented by one
category name have many different 3D shapes. Therefore,
we use structural models of objects for the recognition of
real-world scenes. For such a scene including complex
occlusions as in Fig. 1, however, it is difficult to recognize
all objects even with structural models.

In our research, using effectively the spatial relations
between objects that are not exploited in conventional rec-
ognition systems for a single object, we propose a new
recognition method for a scene including complex occlu-
sions when exact shape models are not obtained in advance.

Our previously proposed system [14, 15] and conven-
tional image understanding systems for a single real-world
image including multiple objects, such as the Schema Sys-
tem [4], make use of spatial relations among objects as a
recognition clue. Since their targets are landscape or aerial
images, they perform recognition by region segmentation
and labeling. Basically, they treat a target image as a 2D
scene and interpret 2D spatial relations on the image even
for a 3D scene. Such 2D analysis for a 3D scene is effective
in aerial images and distant view images of an outdoor
scene, since in such scenes the depth of target objects is
much smaller than the distance to the scene. However, for
short-range view images such as an indoor image, 2D
analysis is not effective, because by 2D analysis the system
cannot determine front-and-back and top-and-bottom rela-
tions between objects. The depths of target objects in a
short-range view scene cannot be ignored. Therefore, 2D
analysis cannot make the best use of spatial information
among objects, and is not effective in handling complex
occlusions.

On the other hand, since humans have knowledge of
the rough 3D structure of objects existing in the real world,
even from a single image they can estimate the 3D structure
of objects and 3D spatial relation among them. A human
also has a knowledge of physical laws, such that an object
without support falls. Thus, for example, if a personal
computer is on a flat board whose legs are not seen, we can
infer from our knowledge that the flat board has legs and is
a part of a desk, that there is a floor under it, and that the
floor supports the desk. For a system that understands a 3D
scene from a single 2D image, it is necessary to provide a
3D spatial reasoning ability based on qualitative physical
laws.

In our research, for the recognition of scenes includ-
ing complex occlusions, we adopt 3D model fitting and
reasoning about the “supporting relation,” which is differ-
ent from simple 2D recognition by region segmentation and
labeling. First, we estimate the 3D structure of objects by
qualitative fitting of 3D structure models that reflect the
functionality of the objects themselves. Then, we reason
about the “supporting relation” between objects, which is
the relation in which an object is on another object.

Model fitting is first carried out for such image fea-
tures as edges and regions extracted from an image. In this
research, since our main interest is an ability to deal with
real-world objects that have various shapes and views, we
adopt a method by which the variety of target object views
can be handled. Then we eliminate object candidates that
cannot exist and estimate actual objects from their parts
seen in the image by inferring supporting relations, which
enables us to compensate the uncertainty of estimation of
the 3D structure of objects. In this way, we can recognize
objects in an image of an indoor scene including complex
occlusions without exact shape models.

In this paper, we describe our approach to introducing
qualitative 3D model fitting and the “supporting relation”
checking mechanism, and next describe the knowledge of
relations between objects, a method of evaluation of object
candidates based on it, and an implementation based on our
multiagent-based image understanding system, which is
called MORE (Multiagent architecture for Object REcog-
nition) [14, 15]. Finally, we present the results of recogni-
tion experiments.

2. Recognition of an Individual Object

Since objects represented by such nouns as “desk”
and “chair” have various shapes, it is impossible to prepare
exact shape models in advance. Therefore, in this research,
to recognize each single object, we prepare prototype mod-
els that represent essential functional structures common to
the same kind of objects [5, 10, 11]. For example, the
functional structure of a “chair” is a combination of a sitting
surface and one or four legs, and that of a “desk” is a
combination of a desk face and four legs. By fitting models
to image features extracted from an image and estimated
from “supporting relations,” we infer the existence of ob-
jects and the 3D structure of object candidates. For some
objects we prepare several prototype models, and we select
the model with the highest confidence value from among
them.

Although such a simple model fitting method enables
us to recognize objects with various shapes, it sometimes
confuses different kinds of objects and creates conflicts. In
this case, we resolve the conflict by evaluation of relations
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to other objects as well as accuracy of model fitting, and
identify the target objects.

2.1. Representation of a model

A prototype model is represented by model elements
and a model graph. Model elements are polygons and
straight line segments according to the appearance of the
object [Fig. 2(a)], which carry information about their real
shape and their generally expected pose in the real world.
A model graph represents connecting relations between the
model elements [Fig. 2(b)]. In Fig. 2(b), the model elements
of the desk are defined as a parallelogram (PG) with four
vertices (fl, fr, rr, rl) and a vertical line (VL) with two
vertices (t, b). The lengths of two edges of the parallelogram
are a and b, respectively, and the length of the vertical line
is c. These two model elements are defined as a horizontal
rectangle plane and a vertical bar in the real world. The
model graph in Fig. 2(b) indicates that an upper vertex(t) of
each vertical line is connected to each vertex of a parallelo-
gram. In such a way, we define a “desk” model as consisting
of a horizontal plane and vertical legs [Fig. 2(e)], and a
“chair” as consisting of a horizontal sitting plane and ver-
tical legs, so that the common structures of many “desks”
and “chairs” are well represented by these models.

Each model has information on a range of relative
sizes of model elements and properties regarding which
elements are supportable and which are to-be-supported
[Fig. 2(c)]. Here, a “supportable” element and a “to-be-
supported” element mean an element that can support
other objects and an element that must be supported by
another object, respectively. These properties are used in
the stage of checking supporting relations described later.
For example, the model of “desk” has one parallelogram
(PG) as its supportable element and four vertical line (VL)
segments whose bottoms are its to-be-supported elements

as shown in Fig. 2(f). Figure 2(d) shows the weight value
of each model element used evaluating the confidence value
of an object candidate.

2.2. Method of fitting a model to the image

For detecting an object candidate, we first extract line
segments and regions from the image. These line segments
and regions are called basis elements, since they are evi-
dence for fitting a model. We extract them by conventional
image processing algorithms, for example, the Canny edge
detector [2], the Hough transformation, the region growing
segmentation method, and so on. Next, we group line
segments and regions into proximity pairs of lines, parallel
pairs of lines, U-shapes, which consist of a parallel pair of
lines and their connecting line, and parallelograms by the
perceptual grouping method [7].

We infer the qualitative 3D structure as well as the
existence of an object candidate by fitting a model to groups
of line segments and regions extracted from the image (Fig.
3). We judge whether a model is applicable or not by
examining whether the range of sizes of all elements as-
signed to a model beforehand is satisfied and whether the
confidence value of a candidate, which represents good-
ness of fit, exceeds a threshold value. If fitting is successful,
an object candidate is generated.

In addition, we estimate which parts are vertical,
horizontal, supportable, and to-be-supported by using the
properties of model elements related to the categories of
vertical, horizontal, supportable, and to-be-supported. Al-
though this model fitting is qualitative without quantitative
accuracy, we can obtain the size and direction of an object
candidate accurately enough to carry out qualitative reason-
ing about supporting relations. We call the regions and line
segments of an object candidate estimated by fitting a
model “candidate elements.” Candidate elements are all
elements expected to be viewed without occlusions.

The confidence value of a candidate used in resolv-
ing conflicts among models is scored from 0 to 1. It is

Fig. 2. An example of model representation of “desk.” Fig. 3. Flow of estimating an object candidate of “desk.”
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defined as the weighted sum of the ratios of the correspond-
ing basis elements to the candidate elements, as follows:

where n is the number of elements, bi is the number of pixels
of the i-th basis element, and ei is the number of pixels of
the i-th candidate element. Ci is a weighting factor, which
represents the degree of importance of each element and is
provided as a priori information with each model. For
example, “desk” has six elements, a contour and a region
of a desk face and each leg, and the Wi for them are set as
0.4, 0.3, and 0.1, respectively.

We fit a plane model to background objects, such as
floors, walls, roads, and sky, that have no constant shape,
as shown in Fig. 4. For these background objects, the model
elements are only plane regions. We compute confidence
value of a candidate for them as follows:

where b is the number of pixels of the region of a basis
element, and e is the number of pixels of the region of a
candidate element.

3. Checking Supporting Relation

The “supporting relation” is the relation that an
object is supported by other objects. All objects except
background objects, such as floors, walls, roads, and sky,
must be supported by other objects in the real world due to
gravity. Humans know such qualitative physical laws em-
pirically, and they may have an effect on human perception.
Then, according to this fundamental rule of real-world
scenes, the system makes use of relations regarding which
object supports which object.

Each time the system generates a new object candi-
date, it examines whether the “supporting relation” holds

between already generated candidates and the new one. By
checking the supporting relation between objects, the sys-
tem eliminates object candidates that cannot exist and esti-
mates actual objects from their parts seen in the image.

The “supporting relation” holds when an object can
be considered to be located on another object and to be
supported by it. Checking of the “supporting relation” is
carried out by examining whether the regions of to-be-sup-
ported elements of the object are almost all included in the
region of supportable elements of another object. If so, the
former object is regarded as supported by the latter one. We
present an example including the relations that “desk is
supported by floor” and “book is sup-
ported by desk” in Fig. 5.

In Fig. 5, we can also consider the book to be sup-
ported directly by the floor. However, we can infer floor ⇒
desk ⇒ book, from floor ⇒ desk, floor ⇒ book, and desk
⇒ book, where the relation that object A supports object B
is defined as A ⇒ B.

If a candidate has no supporting relation, to-be-sup-
ported elements of the candidate are regarded as “virtual
basis elements,” and the system searches for a new candi-
date with supportable elements including the virtual basis
elements (Fig. 6). This search is carried out for kinds of
objects that have the possibility of supporting the candidate

(1)

(2)

Fig. 4. Estimating an object candidate of “floor.”

Fig. 5. Checking “supporting relation.”
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with no supporting relation according to the “relational
knowledge” that we shall describe later. Thus, the system
can detect a new candidate that could not be detected before.

For example, if the system generates a “workstation
(WS)” candidate with no supporting relation, it regards the
to-be-supported elements of “WS” as the virtual basis ele-
ments of a desk face element (Fig. 6). The system searches
the surrounding area of the virtual basis element for a new
candidate including it as a supportable element, and, as a
result, detects “desk” by fitting a model to the basis ele-
ments extracted from an image and the virtual basis ele-
ments generated from the to-be-supported elements of
“WS.”

In this way, by introducing the “supporting relation,”
the system recognizes an object occluded by another object.

If candidates other than background objects have no
supporting relation, finally, the candidates are canceled.

4. Evaluation of Relational Knowledge and
Object Candidates

4.1. Relational knowledge

The system processes “relational knowledge” before-
hand. In our system, it consists of descriptions of the
relative spatial relations generally expected between two
objects. It is used for computing the confidence value of
relations and inferring a new object candidate that has
supporting relation to already detected candidates.

Relational knowledge is represented by a combina-
tion of “name of relation,” “source object’s name,” and
“destination object’s name.” For example, “on(book,
desk)” and “next-to(chair, desk)” mean “a
book is usually on a desk” and “a chair is usually next to a
desk,” respectively. At present, we have two types of rela-
tions, “on” and “next-to.”

The system judges whether each relation holds by the
information on supporting relations and the relative loca-
tion of objects in the image. This judgment is made by
checking the relational knowledge one by one. “on(A,
B)” holds when object A is supported by object B. “next-
to(A, B)” holds when both objects A and B are sup-
ported by the same one object, and are located on the same
support-capable plane. The system uses all relational
knowledge to ascertain whether relations are applicable.

The confidence value of relations Vre is determined
as a weighted sum of holding relations:

where r is the total number of relations, ni represents
whether relation i holds, taking a value of 0 or 1, and k is a
constant. We set k to 0.4 for the experiments. ci is a weight-
ing factor that represents the significance of each relation.
At present, it is set 1.0 for the relation “on” and 0.5 for the
relation “next-to.”

Equation (3) includes an exponential term, so that the
increase of Vre is much larger when the number of holding

Fig. 6. Estimating a “desk” candidate that supports the “workstation” candidate by combining virtual basis elements and
basis elements.

(3)
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relations increases from one to two, compared to the case
in which it increases from five to six. The confidence value
of relations Vre takes a value from 0 to 1. It is estimated by
checking relational knowledge items one by one. It can be
regarded as the degree of naturalness of existence of a
candidate in the scene.

4.2. Evaluation of object candidates

If two or more agents generate different candidates
in the same region of an image, a conflict occurs. Conflict-
ing candidates are compared by confidence value V. V is
calculated as a weighted sum of the confidence value of a
candidate Vim and the confidence value of relations Vre as
follows:

where S is the total number of pixels of candidate elements
and w is a constant that controls the balance between Vim

and Vre. The weights are tuned by taking the size of a
candidate into account. If the number of pixels S of the
candidate is more than 2w, the ratio of the weight of Vim and
Vre is 2 : 1. Otherwise, it is S : w. This emphasizes Vre of the
candidates having a small number of pixels when evaluat-
ing V. We set w to 2500 for the experiments.

As a result of comparison of V, the candidate with the
highest value remains, and all other candidates are elimi-
nated.

There are no established confidence values of object
candidates in an image understanding system, and various
evaluation methods have been used in many systems. We
modified the method used in Ref. 5 and applied it for our
system.

5. Overview of the System

5.1. System architecture

We designed the system based on “MORE” (Mul-
tiagent architecture for Object REcognition), which we
proposed in Refs. 14 and 15. “MORE” is a multiagent-
based architecture. The system is constructed as an assem-
bly of agents that recognize a single kind of object from an
image separately, and it has no central management mecha-
nism (Fig. 7). This architecture enables the system to rec-
ognize various different kinds of objects by adding agents.
Since we can apply different knowledge representation and
recognition methods for each agent, it is suitable for imple-
menting a large-scale image understanding system. In ad-

dition, a nonfixed processing flow allows flexible fusion of
top-down and bottom-up processing.

One agent consists of a recognition module which
recognizes a single kind of object, and a communication
module which cooperates with other agents.

A recognition module (RM) has models of objects,
and recognizes only one kind of target object in an input
image. Each time an RM finds a new object candidate, it
computes its confidence value of a candidate, then sends
information about the basis elements, candidate elements,
supportable elements, to-be-supported elements, and the
confidence value of a candidate to the communication
module in the same agent. In our architecture, we do not
assume a special implementation for an RM. A suitable
recognition module is implemented by using suitable rec-
ognition methods, algorithms, knowledge, and knowledge
representation.

A communication module (CM) carries out nego-
tiation among the agents so as to maintain consistency over
the whole system. A CM receives information about object
candidates from the RM, exchanges it with other CMs, and
resolves conflicts by comparing confidence values. Every
CM has relational knowledge. Using this knowledge, it
computes the confidence value of relations, and it checks
supporting relations with respect to candidates generated
by other agents.

5.2. Processing flow

The processing flow among all of the modules is
message-driven. We describe the detailed flow of messages
for the example of Fig. 8.

(1) An input image is sent to the recognition modules
of all of the agents. Each CM sends an “initial recognition
request” to each respective RM. Then, each RM starts the
recognition.

Fig. 7. Basic structure of the system.

(4)

(5)
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(2) Each time an RM finds an object candidate, it
sends information on the candidate and its candidate confi-
dence value to the CM.

(3) The CM checks whether the candidate is sup-
ported by any other candidates, and broadcasts the informa-
tion on the candidate to all other agents.

(4) If a candidate other than a background object is
not supported by any object candidate, the CMs generate
virtual basis elements and broadcast their information as a
“to-be-supported request.”

(5) Other agents examine whether the broadcast is
consistent with their own object candidates. If not, the
agents sends back an “objection message.” Then conflict
resolution is performed between the CMs concerned.

(6) If a CM receives a “to-be-supported request” and
has relational knowledge that the candidate is usually on its
own object, the CM sends a “conditional recognition
request” to its RM. The RM starts to find object candidates
with supportable elements overlapping the virtual basis
elements of the candidate.

In addition, our system has a “revival mechanism.”
The system revives an object candidate that was eliminated
once, when its confidence value of relations is changed and
the result of conflict resolution becomes invalid. By this
mechanism the system always keeps object candidates that
are consistent with others, and maintains consistency
among agents. If all modules of all of the agents are in the
state of waiting for a message and there is no message on
the communication lines, the whole recognition activity of
the system terminates.

6. Experiments

We implemented an experimental system with six
agents [“desk,” “chair,” “wall,” “floor,” “book,” and “work-

station (WS)”] on a PC cluster system consisting of six PCs
(Intel Celeron 450MHz with 128 MB memory) using the
PVM library [6]. In this experimental system, since we have
not yet taken account of effective load balancing, each agent
is implemented on each PC, and all recognition modules
extract basis elements from an input image independently.
It is possible to share processing of basis element extrac-
tion. In this section, we give a description of the processing
of two sample images of a relatively simple indoor scene
and a more complex scene, and describe the experimental
results for 20 indoor images.

6.1. Example of recognition

After the system is given an input image, which is a
256-level gray-scale image, the image is sent to the RMs in
all agents, and the RMs start extracting straight line seg-
ments and regions as image features. When sample image
No. 1 (Fig. 9, 480 × 360) is given, first, straight line
segments (Fig. 10) and regions (Fig. 11) are obtained by
extraction processing of image features such as edge detec-
tion, line detection, and region segmentation. Next, the
system extracts proximity pairs of lines, parallel pairs of
lines, U-shapes, which consist of a parallel pair of lines and
their connecting line, and parallelograms by grouping
straight line segments (Fig. 12). The RM of the “WS” agent
extracts two parallelograms as front parts of display moni-
tors of workstations as the most prominent features and one
parallelogram and one U-shape for parts of keyboards. The
RM of the “WS” agent fits a model of the front part of the
display and a model of a keyboard to the parallelograms
with two vertical edges and the parallelograms in the front
of a display, respectively, and generates two new object
candidates (Fig. 13). The right-side parts of WS candidates
are detected from vertical straight line segments behind the
front parts of the display monitors. In addition, the RM
infers parallelogram elements from the bottom straight
edges of the front sides and right sides of displays, and
considers the region consisting of them and the region of
the keyboards as to-be-supported elements of the “WS”
candidates (Fig. 14). Thus, the “WS” agent generates two

Fig. 8. Flow of messages. (1) Initial recognition
request. (2) Information on a new object candidate. 

(3) Broadcasting information of a new object 
candidate. (4) To-be-supported request message.

 (5) Objection message. (6) Re-recognition 
request.

Fig. 9. Sample image No. 1.
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new candidates, but neither of them is supported by any
object candidates. Then, the CM of the “WS” agent broad-
casts not only the information on the two new candidates,
but also “to-be-supported request” to other agents.

At first, the “desk” agent detects no desk candidates,
since the obtained image features are only straight edges
and regions, which constitute insufficient information (Fig.
15). However, after receiving a “to-be-supported request”
with information on virtual basis elements from the “WS”
agent, the “desk” agent tries to detect a new candidate that
has the virtual basis elements as its basis elements, since it
has relational knowledge “on(desk, WS).” The “desk”
agent detects enough basis elements to generate a new desk
candidate by joining the virtual basis elements to some
straight edges and regions (Fig. 16). By fitting a model to
these basis elements, a desk candidate can be detected (Fig.
17). In addition, a floor is detected correctly by a “to-be-
supported request” from the “desk” agent. Finally, two
“WSs,” two “desks,” and a “floor” are detected as shown
in Fig. 18.

We next describe an experiment with sample image
No. 2 (Fig. 19, 640 × 480) which is a more complex scene
than sample image No. 1. In this experiment, first, four WSs
are detected (Fig. 20). Their to-be-supported elements are
shown in Fig. 21. At the same time, “books” are detected,
and 10 “book” candidates are generated (Fig. 22). Then,
three WSs, excluding the second WS from the right gener-
ate a conflict with books. By conflict resolution, three WSs
remain and books are eliminated. For example, in the
conflict between the keyboard of the rightmost WS and the
book, the candidate confidence values Vim are 0.78 and
0.59, the confidence values of relations Vre are 0.33 and
0.33, and total confidence values V are 0.62 and 0.43,
respectively. As a result, the book candidates are eliminated.
The real keyboard of the second WS candidate from the
right is recognized as a book candidate, since the position
of its keyboard part is detected incorrectly.

Since the WS candidates and the remaining book
candidates have no supported object candidates, “to-be-
supported requests” are issued. Then, the “desk” agent joins
virtual basis elements that originate from the to-be-sup-

Fig. 10. Extracted straight edges.

Fig. 11. Extracted regions.

Fig. 12. Parallelograms and U-shapes.

Fig. 14. To-be-supported elements of two “WS”
candidates.

Fig. 13. Two “WS” candidates.

Fig. 15. Basis elements of a “desk.”
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ported elements of WS candidates (Fig. 21) and book
candidates to the basis elements of desk candidates (Fig.
23), so that the agent can recognize the desk candidate,
although much of the desk face is occluded by other objects
(Figs. 24, 25). Three of five book candidates causing no
conflict fail to have identified object candidates supporting
them, and are eliminated due to no supporting relation.
Actually, these book candidates are incorrectly detected,
and are eliminated correctly by checking the supporting
relation. Finally, “WSs,” “desks,” “books,” a “chair,” and a
“floor” are recognized correctly, although two “books” on
the right-back desk are recognized incorrectly as shown in
Fig. 26. In this experiment, we implemented “WS” agent to
recognize its candidate as a pair consisting of a display and
a keyboard, so that two main bodies on the right-back desk
are not recognized.

6.2. Experimental results

We performed recognition experiments on 20 indoor
images whose size was 480 × 360. We show 12 out of the
20 images used in this experiment in Fig. 27. In this figure,
the images in the upper row are quite simple, those in the
lower row are complex, and those in the middle row have
intermediate complexity. The numbers of images in each
category are 7, 7, and 6, respectively. We evaluate the results
by dividing them into three grades, “almost entirely cor-

Fig. 16. Virtual elements and basis elements of a “desk”
candidate.

Fig. 17. A “desk” candidate.

Fig. 18. Recognition result.

Fig. 19. Sample image No. 2.

Fig. 20. Four “WS” candidates.

Fig. 21. To-be-supported elements of four “WS”
candidates.

Fig. 22. “Book” candidates.
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rect,” “half correct,” and “almost entirely incorrect.” The
numbers of images in these three grades are 9, 6 and 5,
respectively, as shown in Table 1.

6.3. Discussion

In the experiment with 20 indoor images, an example
of “almost entirely correct” images is sample image No. 1
shown in Fig. 9. A “desk” is recognized by checking the
supporting relations and recognition with virtual basis ele-
ments, although most of the desk face is covered by two
“WSs.”

Figure 28 is an example of “half correct” images. In
this image, there are a “notebook PC,” piled “books,” an
opened “notebook” on the desk, a “bookshelf,” and “book”
in the bookshelf. A “notebook PC” and an opened “note-
book” are recognized as a “WS” and a “book,” respectively,
and a “desk” is recognized correctly by checking support-
ing relation as shown in Fig. 29. However, since the RM of
the “book” agent is implemented to recognize a parallelo-
gram as a book, a parallelogram or a U-shape is not ex-
tracted, and the piled “books” and the “book” in the
bookshelf are not recognized. If we use the relational
knowledge “on(book, book),” if a book on the top is

Table 1. Results for 20 images

almost entirely
correct

half correct
almost entirely

incorrect

9 6 5

Fig. 23. Basis elements of “desk” candidates.

Fig. 24. Virtual basis elements and basis elements of
“desk” candidates.

Fig. 25. Three “desk” candidates.

Fig. 26. Recognition result.

Fig. 27. 12 out of 20 images for experiments. Images in
the upper row are quite simple, those in the lower row are

complex, and those in the middle row have 
intermediate complexity.
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not recognized, books under it are also not recognized. To
deal with such a case, it is desirable to prepare a model of
a block of books in contact with each other in advance.

An example of “almost entirely incorrect” images is
shown in Fig. 30, and its result is shown in Fig. 31. This
image is so complex that only parts of “floor” are recog-
nized. Although the display of a “WS” appears clearly in
the image, the color of the keyboard on the desk is so similar
to the color of the desk face that the system cannot recog-
nize the “WS.” This depends on the resolution of the input
images, so that it is desirable to introduce multiresolution
analysis, which can recognize the rough structure of the
scene for a lower-resolution image first, and will later
recognize details for only the needed parts of a higher-reso-
lution image. There exist unknown objects on the center
desk, for which models are not prepared. A wrapper without
constant shape is on the front side of the center desk, and it
is difficult to represent an object without constant shape
such as a wrapper for rigid model fitting. It is necessary to
introduce active contour and textural analysis methods.

7. Related Works

The objective of our work is scene recognition when
exact models of target objects are not available in advance.
The work conducted by Tenenbaum and Barrow [13], in
which segmented regions were labeled by the relaxation
method, had similar objectives to our work. But their work
used too simple methods, and it was not usable for complex
images. After that, knowledge-based recognition systems,
for example, that of Ohta [9], the Schema System [4], and
SIGMA [8], appeared. They used both models for single
objects and relational knowledge among objects, and
achieved an integration of bottom-up and top-down proc-
essing. Our work is also similar to theirs, but their target
was not indoor images but outdoor images or aerial images
that seldom include occlusions and need not be treated in
three-dimensional space, because their method of utilizing
spatial information is two-dimensional.

The features of our system are that we estimate
supportable and to-be-supported elements by fitting 3D
structure models to partial features extracted from an im-
age, and verify the generated object candidates by checking
supporting relations. A similar system, which generates
individual object candidates and verifies them based on
relations among candidates, is CONDOR [12]. Its method
of recognition is called context-based recognition. How-
ever, CONDOR employs two-dimensional recognition for
images of an outdoor scene. It does not employ qualitative
three-dimensional recognition like our system.

Cooper and colleagues [3] and Brand [1] realized
recognition with consideration of the physical relation that
an object supported another object against gravity. In their

Fig. 28. An example image whose results are half
correct.

Fig. 29. Recognition result.

Fig. 30. An example image whose results are almost
entirely incorrect.

Fig. 31. Recognition result.
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work, the systems analyzed scenes based on knowledge of
qualitative physical laws. However, the objective of their
work was not recognition but understanding of physical
action from images. Therefore, the target objects were
simple objects like blocks.

In our system, in recognizing an individual object,
such as a “desk” or “chair,” represented by a general noun,
we pay attention to the essential structure that provides the
functions of an object. This idea is imported from function-
based recognition [10, 11]. It claims that the essence of an
artifact is to provide functions to humans and that we should
recognize an artifact by examining whether it has a shape
providing a relevant function.

8. Conclusion

In this paper, we have proposed a system that esti-
mates the 3D structure of a target object by fitting a quali-
tative model qualitatively, and verifies object candidates by
checking the “supporting relation” using “supportable re-
gions” and “to-be-supported regions.” It totally realizes
flexible recognition for real-world indoor images including
complex occlusions. We have implemented the system as a
multiagent-based image understanding system on a PC
cluster.

In the present system, we often obtain imperfect
results due to insufficient ability of the recognition mod-
ules. Thus, in future work, we plan to study how to construct
a recognition module with greater ability and more effective
cooperation mechanisms and learning mechanisms to make
up for the insufficient ability of individual recognition
modules. We also plan to make use of high-resolution
images recently obtainable by digital cameras easily in
order to recognize objects that appear with small size in an
image.

Experiments using the current implementation re-
vealed no problems of convergence of recognition process-
ing and stability of recognition results. In systems of larger
scale by increasing the number of agents in the future,
however, we will need to analyze behavior of the system in
this respect.
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